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I.Introduction

This paper is devoted to the control of the current-
conducting region in a thyristor-like structure. Here, as
well as before [1, 2] we refer to TLS as a certain P+npN+

structure where two outer layers provide effective injection
of their majority carriers into two inner layers (bases).
One of the bases (base I) is gated. The gate transfers the
controlling current into the base. This current squeezes
the current-conducting region (the ON-region in fig. 1),
and enlarges the OFF-region. The gated base is usually
highly conducting in comparison with the second base
(base II). In silicon controlled rectifiers (SCRs) [3], the
gate current just turns the TLS on and  off, while in light-
emitting (LE) and lasing (L) thyristors the gate current
can also control (or modulate) light emission [4, 5]. That
is why we are interested in characteristics of  stationary
control of the ON-region (the position of the layer between
the ON- and OFF- regions, called the ON/OFF-junction)
as well as the speed of the ON/OFF-junction in the TLS.

Our further consideration is based on the fact that the
typical structures of LE thyristors [6, 7, 8] differ greatly
from the structures of SCRs. LE thyristors should not

PACS 72.20; 73.61.G; 85.30.R

Switching waves in asymmetric thyristor-like
structures for incomplete gate turn off regime

Z. S. Gribnikov
Institute of Semiconductor Physics, NAS  Ukraine, 45 prospekt Nauki, Kyiv, 252028, Ukraine

I. M. Gordion, and V. V. Mitin
Wayne State University, Detroit, MI 48202, USA zinovi@besm6.eng.wayne.edu

Abstract. A stationary wave of switching is considered in an infinite thyristor-like structure
(TLS).This wave is initiated by the controlling gate current which differs from a certain
equilibrium  current J

g0
(j)

 
providing a neutrally equilibrium (translationally invariant)  position

of the transition layer between a blocked (OFF-) region and an open (ON-) region for a given
current density j in the ON-region. The dependence of the wave velocity v(J

g
, j) on the gate

current J
g
 and the current density j is derived.We deal with structures in which the conductivity

of gated base I is much higher than the conductivity of ungated base II.The injection level is
considered low for base I and high for base II. It is shown that the velocity of the switching wave
(i.e.   the speed of transient processes in TLS) is determined mainly by parameters of base II. It
is also demonstrated that a high speed of operation can be reached in structures with a moderately
long base II (the length of the base should exceed 1-2 bipolar diffusion lengths) and a small
lifetime of carriers in this base.

Keywords: switching waves, thyristor-like structure, transient processes, controlling gate current,
injection level.

Paper received 22.06.98; revised manuscript received 29.07.98; accepted for publication 27.10.98.

Fig. 1. a) Considered thyristor-like stucture (TLS) with
b) the distributions of the current density j(y) and
c) the electrical potential y(x)  in it.
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usually resist high voltages, therefore the sum of the base
widths, w

I 
+ w

II
, is much smaller than the initial length of

the ON-region, 2a
0
, for most LE TLSs. Usually the value

of w
I 
+ w

II
 does not exceed 0.2�0.3 µm while the initial

length of the ON-region is rarely less than 10 µm. Detailed
descriptions of the LE and L pnpn-diodes (having different
names) with gated either p- or n- bases, are presented in
[10-16]. For such structures the strong inequality
2a

0
>>w

I 
+ w

II
 admits regimes with the width of the ON/

OFF-junction which is also much greater than w
I 
+ w

II
.

This means that the electrical potential changes quite
smoothly along each base. The distribution of none-
quilibrium carriers in the bases can be considered as nearly
one-dimensional (1D) because the carrier concentrations
change much slighter along pn-junction planes than in
the perpendicular direction. Such distributions allow us
to exploit a quasiadiabatic approach which was
demonstrated earlier [1, 2, 9]. This approach assumes that
the distribution of nonequilibrium carrier concentration
can be represented as a function of x-coordinate and
electric potentials of both bases, U

I
(y) and U

II
(y). (Here

U
I
 is the voltage drop between the anode P+-emitter) and

base I, U
II
 is the voltage drop between the anode and base

II). This approximation leads to a self-consistent system
of two nonlinear differential equations for U

I,II
(y). This

system can be solved numerically [2] or can be reduced to
one nonlinear differential equation [1] under the condition

III σσ >> ,           (1)

where σ
I,II

  are the longitudinal (in-plane) conductivities
of bases I,II.

Here we consider a structure where base I is doped
much heavier than base II, so that inequality (1) is satisfied.
We also assume low injection level in base I and high
injection level in base II. For real asymmetric thyristors,
the second assumption is more suitable than the
assumption of low injection level in both bases, as was
considered before [1, 2, 9]. We also keep assuming that
carrier distributions in both bases are functions of the
electric potentials, U

I,II
(y), and of the voltage across the

entire structure, U, which does not depend on y-coordi-
nate. This representation for high injection level in base
II is valid only if this base is not too long (w

II 
≤ (3-4)L,

where L is the bipolar diffusion length in base II), so that
the voltage across the base can be neglected in comparison
with the voltage across pn-junctions. Here we consider
the problem of the steady-state position of the ON/OFF-
junction as well as the nonstationary problem which can
be described in the framework of the stationary switching
wave approach [17].

Strictly speaking, the theory of the stationary wave
can be applied only if the gate current and current density
in the ON-region are time-independent. This condition
requires infinitely large values of a and J

a
. However, we

can use this approach to obtain an approximate solution
of the nonstationary problem with comparatively slow
changes of J

g
(t), a(t),  j(t). These changes lead to a slow

change of the velocity, v(t), which should be constant for a
strict stationary wave approach.

II. Model and equations. Stationary theory

The gate is attached to the n-base because the mobility of
majority carriers (electrons) is much higher than that of
holes for A

III
B

V
 materials we are interested in. We consider

low injection level in this base, so that  carrier distribu-
tion is determined by the linear equation of drift and diffu-
sion of minority carriers. The boundary conditions for
this equation are the following:

p(x = 0) = p e I

01

ψ ,          (2)

p(x = w
I
- 0) = ( )p e I II

0
2

2

ψ ψ− ,          (3)

where ψ
I,II 

= eU
I,II

/(kT) are the dimensionless electrical
potentials of bases I and II; p01

 is the equilibrium
concentration of holes in base I at the P+n-junction (jct.1,
x = 0). To derive Eq.(3) we have to use the condition of
conservation of quasi Fermi-levels in the inner np-junction
(jct.2): np = const, i.e.

p
I 
(w

I
 - 0) ⋅ n

I 
(w

I  
- 0) = p

II
 (w

I
 + 0) ⋅ n

II 
(w

I
 + 0)           (4)

Because of high injection level in base II, we have

p
II
 (w

I
 + 0) ≈ n

II
 (w

I
 + 0) = N eI

I II− + −ψ ψ ψ0 ,           (5)

p
I
 (w

I
 - 0) = ( )N eI

I II− + −2 20ψ ψ ψ ,           (6)

where N
I
 is the donor concentration in base I at the inner

pn-junction (jct.2), n
I
(w

I
 - 0) e p− =2

0
0

2

ψ  is the effective hole
concentration there (here p02

 is greater than the
equilibrium concentration); and ψ

0
 is the dimensionless

value of equilibrium voltage  across this np-junction.
 As the result of an approximate solution of the drift �

diffusion equation in base I, we obtain:

( )j j e j eI I II

1 11 12
2= − −ψ ψ ψ ,          (7)

)(2/
2221

/
2

IIII ejejj ψψψ −−=          (8)

Since we consider that the values ψ
I
, (ψ

I
- ψ

II
) are high

enough, we neglect 1 in comparison with ( )e eI I IIψ ψ ψ, 2 − . In
Eq.(7), j

1
 is the current density through the emitter

P+n-junction (jct.1). We assume that this junction � either
homojunction or heterojunction � provides emission of
the emitter majority carriers � holes � into base I. The
current density through the inner pn-junction (jct.2)
consists of two portions. The hole current density, /

2j , is
given by Eq.(8). The electron current density, //

2j , will be
presented below. The values of j

11
, j

12
, j

21
, /

22j  can be
calculated only for specified distributions of both donors
and lifetimes of holes in base I.

For uniformly doped base I where the drift term can be
neglected, we have:

IIIIIIIII zDepjzDepj tanh/,tanh/ 02
/
220111 ββ == ,   (9)
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1
~~

/
22121121 )(cosh,, −==== IIIII zjjjj αααα      (10)

where β
I  

is the inverse diffusion length of holes in base I:
β

I
 = (D

I 
⋅ τ

I 
)-1/2; D

I
 is  the coefficient of diffusion and τ

I
 is

the lifetime of holes in base I; z
I
 = β

I
 ⋅ w

I
  is the

dimensionless width of base I. We note that even for
uniformly doped base I the concentrations p01

 and p02

differ greatly because the latter is not a concentration of
equilibrium holes.

Since we assume high injection level in base II, we can
neglect the acceptor concentration in comparison with
current carrier concentration and write the electron
current in base II in the form:

dx

dn
D

b

b
jj IIn +

+
=

1
,        (11)

where  b = µ
n
/µ

p
, and µ

n,p
 are the mobilities of electrons

and holes in base II, and D
II 

= 2D
n
D

p 
/(D

n
+D

p
) is the

bipolar diffusion coefficient, D
n,p

 are  the diffusion
coefficients of electrons and holes in base II, respectively.
We assume that lifetime τ

II
 in base II is constant. The

continuity equation for electron current in base II has to
be solved with the boundary conditions:

p
II 

(w
I  
+ 0) ≈ n

II
 (w

I
 + 0) = n e I II

02

ψ ψ−  ,        (12)

p
II
(w

I
 + w

II
) ≈ n

II
(w

I 
+ w

II
) = n e II

03

ψ ψ− ,        (13)

where n02
 and n03  

are the equilibrium concentrations in
base II at junctions 2 and 3, respectively. These formulae
are valid because low injection levels are considered in
both base I and the N+-emitter. The expressions of current
densities obtained from Eqs.(11), (12), (13) are written in
the form:

IIIII ejej
b

b
wjj ψψψψ −− +−

+
+= 23

//
22/

//
2 1

)0( ,       (14)

IIIII ejej
b

b
wjj II

ψψψψ −− +−
+

= 33323 1
)( ,       (15)

where

IIIIIIIIIIII zDenjzDenj tanh/,tanh/ 033302
//
22 ββ == ,      (16)

1
3323

//
2232 )(cosh,, −=== IIIIIIII zjjjj ααα ;        (17)

IIIIIIIIIIII wzandD βτβ == − 21)(  are the variables related
to base II.

Here we apply one of the main assumptions of our
consideration: the in-plane conductivity of base I is much
greater than that of base II which depends on the electron
concentration n(x). This fact allows us to neglect the gate
current which branches off into base II. So we assume

3
//
2

/
222 )()0( jjjjwjwj I ≅+≅=≅+        (18)

From Eq. (18) we can obtain

( )[ ]IIIII ejejbjj ψψψψ −− +−+== 323232 1         (19)

( )
( )[ ]IIIIIIIII ejejejej

bjjjj
ψψψψψψψ −−− +′′−+′−×

×+=′′+′==

232221
2

22

2232 1
.           (20)

Using Eq.(19), (20) we can express the term  e I IIψ ψ−  through
the terms e Iψ ψ−  and e Iψ .

0
2
1

2
0 BBBe III −+=−ψψ ,          (21)

where B
0 
 and B

1
 depend on e Iψ :

/
2221

2
1

/
22

//
220 /),2(/)1)(1( jejBjejB II

II
ψψψα =+−= − .

As a result, the current continuity equation in base I
can be written in the form:

×−++−= )()~1( 0
2
1

2
01112

1
2

BBBej
dy

d

e

kT
I

II
ψααψσ

[
( )( )] ( ).1~1

)1(~)1((

33

//
22

IIII

IIIII

Rbej

bj
I ψαα

ααα
ψψ =−−+−

−−++×
−          (22)

Generally, /
2212

~

/ jjI =α  can differ from α
I
.

III. Homogeneous solution

A homogeneous solution is valid when the gate current
J

g
 = 0, and all current densities through the pn-junctions

are equal: j
1
 = j

2
 = j

3
 = j. Actually, the same equalities are

valid for an inhomogeneous stationary solution in the
depth of the ON-region. Thus we can treat the homogenous
solution as a boundary condition for an inhomogeneous
solution at y → ∞. From the particular solution of Eq.(22)
(R(ψ

I 
= 0), we obtain:

33

32

)1(

/)1(

jb

ujjb
ee I

+
++

= ψψ
,          (23)

21

12

11






 −== −

j

jej
eu

I

III

ψ
ψψ

.         (24)

From Eq.(20), we can calculate the dependencies ( )e jIψ

and ( )e jψ  (the latter being actually an expression for the
voltage-current characteristic of the TLS):

2

2
2

11

/
22

11

11~










−++=

rj

j
r

j

j

j

j
e

c
I

I αψ
,         (25)
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jjb
e
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II

c
I

2
//
22

2

2
2/

22
3311

1

11~
)1(

1

α

αψ

       (26)

where )1/()1()2(/
~

2/
22

//
22 IIIIjjr ααα −−⋅=  and

)1)1((/)1)(1(
~

/
22 −++−+= IIIIIc bbjj αααα .

We consider more thoroughly two limiting cases: first,
j << j

c
r2, and second, j >> j

c
r2. For the first case, the

dependencies ( )e jIψ  and ( )e jψ  are linear (curves 1�3 in
fig. 2 for the current range  j/(j

c
r2 ) << 1):

IIjjje I /)( ≅ψ ,         (27)

33

32

)1(

2)1(
)(

jbj

rjbj
jje

II

c

+
++

≅ψ
,         (28)

Comparing Eq.(27) with Eq.(7) we note that for
j << j

c
r2, we can neglect the second term in Eq.(7). This

means that this term ( ( )e I II2 ψ ψ−
 instead of e I IIψ ψ−  for low

injection levels in both bases) does not affect  TLS�s
behavior. For this limiting case, the solution is very close
to the solution for low injection levels in both bases (see,

for example, [1]).
For j >> j

c
r2, the dependence ( )e jIψ  is still linear:

)1()( 12

cII j

j

j

j
je I +≅ψ

.        (29)

However, the proportionality coefficient here is larger
than for j << j

0
r2  (see fig. 2). To increase the current

density further, we have to increase U
I
 (or e Iψ )

substantially because of a noticeable counteraction of the
inner junction (jnc.2). Therefore we have to take into
account the term, proportional to ( )e I II2 ψ ψ− . This
dependence is strong if

[ ]
( ) 1~1)1(

1)1(~
>>

−+
−++

II

IIII

b

b

αα
ααα

.        (30)

 Condition (30) is met in structures for which the forward
and inverse transport factors in base I are large (both α

I

and  ~α I  are close to 1), and the values of b, α
I,II

 are far
from the threshold values of the thyristor effect:

01)1( >−++ III b αα ,        (31)

i.e. α
I
(1 + b) + α

II
 - 1 is not too close to 0. We stress that the

multiplier (1 + b) beside α
I
 which misses in the expression

for low injection level in base II, corresponds to the
transition into the ON-state due to the increasing of
injection level in base II.

For j >> j
c
r2 we get:

)1(
)1(

)1(
)( 12

3311

2123
32

c

c

j

j

bjj

jjbjj
je +

+
++⋅

≅ψ
.        (32)

Expression (32) differs from expression (28) not only by
the multiplier (1 + j

12 
/ j

c
) as in Eq.(29) but also by the term

2123
cjj  instead of 2rj

c 
j in the numerator. We can

introduce the parameter

[ ]1)1(

1

)1(

2 2

32 −++
−=

+
=

IIIII

IIc

bbj

rj
m

ααα
α

to describe two different possible dependencies ( )e jψ .
For m << 1 in the current range j ~ j

c 
r2, the value of eψ

becomes greater, but it is still a linear function with steeper
slope up to the current density
 222

32 /)1(~ rjjbjj cc >+ , where the curve becomes
nonlinear: ( )e jψ  ~ j3/2  (fig. 2). For m > 1 the transition
from a linear dependence, ( )e jψ  ~ j, to a nonlinear one,

( )e jψ  ~ j3/2, occurs in the current range j ~ j
c 
r2.

Let us remind that this consideration implies low
injection level in base I, so that the inequality

( ) ( )p e j nI

D01
0ψ <<                     (33)

should be met (see Eq.(2)). Here n
D 

is the donor
concentration in base I at pn-junction 1. Let us discuss
this condition for the simplest case of uniformly doped

Fig. 2. The electrical potentials y, y
I
 versus the current density j:

1 � y
I
(j);  2 � y(j) for m << 1; 3 � y(j) for m >> 1.
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bases. For linear dependence ( )e jIψ , inequality (33) can be
written in the form

2

2

0111

)0(

i

DD

n

n

p

n

j

j =<<

On the other hand, the linear dependence ( )e jIψ  is valid
for the current density







−++

−
⋅⋅⋅+×

×=<<

1)1(

1

tanh

tanh

4

1 2

2

2

2

2

11

2

11

III

II

II

I

III

III

i

Dc

bz

z

D

Db

n

n

j

rj

j

j

αα
α

τ
τ        (34)

The value of the multiplier in the parentheses of Eq.(34)
can differ from 1 mainly due to a large difference of τ

I
 and

τ
II
. The condition τ

I
 << τ

II 
can provide a regime of low

injection level in base I up to high current density.

IV. Inhomogeneous stationary solution

Now we are interested in Eq.(22) with a non-zero gate
current, J

g
, that squeezes the current-conducting region

of a TLS. For

2
1

2
0 BB >>        (35)

Eq. (22) has  the form:

)(
/1

)1(

1

1)1( )(
11

2

2

χ
α

αα

χσ

ψ R
Ae

ee
e

b
j

dy

d

e

kT

x

xx

II

III

I

I =
+

−
−

−++=

=

∞ ,           (36)

where χ = ψ
I
 - ψ

I 
(∞) < 0,  A = [1 � α

II 
(1 � α

I
(1+ b)] / [α

II 
+

+α
I 
(1+ b) −1] = ( ) ψψ ee I /∞  =(j

33
(1 + b)) / (j

33
(1 + b) α

II 
+

+2j
c
r) (the second part of the expression is derived from

Eqs.(27), (28) which are valid if j << j
c
r2).  For the

stationary solution, the transition from the regime with
low injection level in both bases to the regime with high
injection level in base II and low injection level in base I
(under condition (35)) results only in a new definition for
the transport factor of base I, now being equal to α

I
(1 + b)

instead of α
I
 for the low injection. This fact determines

the choice of doping for the bases. It is clear that  n-doped
base I and p-doped base II structure, as we consider from
the beginning, is preferable, because for most of the
considered semiconductors b >> 1, and the condition of
open state for the  thyristor � inequality (31) � is satisfied
for a wider range of α

II 
.

For  j << j
c
r2, inequality (35) can be modified to:

2

222

/
22

2//
22

)1)1((

)1()1(

4

)(

−++
−+

⋅<<
b

b

j

j
j

III

III

αα
αα

       (37)

while the condition  j << j
c
r2 has the form:

)1)(1)1((

)1)(1(

4

)(
~

22

/
22

2//
22

IIIII

II

b

b

j

j
j

αααα

α

−−++

−+
⋅<<

.       (38)

Inequalities (37) and (38) are not identical, but for most
cases they differ only slightly. A detailed stationary
solution for the distributions ψ

I
(y),  j(y) for low injection

level in both bases can be found in [1]. We emphasize, that
eq.(36) differs from the analogous equation in [1] only by
definitions of the parameters. From the solution of Eq.(36)
we obtain that for infinite TLS there existsthe unique value
of the gate current, J

g0
, which provides steady-state

position of the ON/OFF-layer for a given current density
in the depth of the ON-region:

jIJg ⋅= 10                    (39)

The current density can be presented as j = J
a 
/(2a), where

J
a 
 is the full current in the ON-region (in A/ cm) and 2a is

an effective width of the ON-region (see fig. 1) where

( ) ( )[ ]11ln1
1

1)1(T2 1
1 −++

−
−++

= −AAA
b

e

k
I

II

III
l α

αασ . (40)

V. Stationary wave of switching

 We assume here that inertia of the transient processes in
TLS is determined mainly by the drift-diffusion and
recombination phenomena in quasineutral bases I and II;
therefore we can neglect the charging processes in pn-
junctions which are much faster. Therefore we have to
solve two equations of continuity. The first of them is for
holes in base I:

div j
p

 
= -p/τ

I
 -∂ p/∂ t,         (41)

The second of them is the analogous nonstationary
equation for electrons in base II. Here as well as in discussed
above stationary problem, we neglect (j

p,n
)

y
 in comparison

with (j
p,n

)
x
. Besides, we assume that the current density j

changes slightly along y-axis over the lengths of the order
of w

I,II
. To get the solution in the form of the stationary

wave, we introduce new variables x, y/  = y - vt instead of x,
y, t;  thus Eq.(41) is modified to

yppxj Ipx ∂∂−−=∂∂ /// υτ .        (42)

Equation (42) has to be solved with boundary conditions
(2), (3) for ψ

I,II 
(y). For the small velocity and for uniformly

doped base I (i.e.  j
px

 = �D
I
 ∂p/∂x, we can write the

approximate solution of Eq.(42)  in the form:

++
−

≅
II

I
I

II

II

w

x
ywp

w

xw
ypyxp

β
β

β
β

sinh

sinh
),(

sinh

)(sinh
),0(),(
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2
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−⋅
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II

IIII
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w
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−

∂
∂
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)(sinh
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II

III
I

II

II

II w

xw
w

w

x
x

y

ywp

D β
ββ

β
β

β
υ

.

Here we have neglected  terms which are proportional to
v2 and the other higher degrees of v. Now we can calculate
the current densities:
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where j
ij
, /

22j  are the expressions from (9), (10) and
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Then we can derive an expression, which is similar to
Eq.(43), for distribution of electrons, n(x, y), in base II
with high injection level in it,  and calculate current
densities:
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As a result we can write down:
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where
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Taking into account  inequality (35) and the equation
//
2

/
22 jjj += , we obtain for uniformly doped base I:
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Using Eqs.(44), (50) and (54), we derive the equation which
is similar to eq.(36) but for nonstationary case:
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Equation (55) differ from Eq.(36) by the proportional to v
term on the RHS of the equation, where
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and )(∞−= II ψψχ ,

)1/()1( IIIIb ααγ −+= , )1/()1( IIb αδ −+= .

We emphasize that Eq.(55) is derived under the several
conditions. First, the velocity is small, i.e. we restrict our
consideration by the linear on u terms. Second, the
conditions Eq.(35) and j << l

c
r2 are met (i.e. the strong

inequalities (37) and (38) are satisfied). To solve eq.(50)
we can exploit the theory for nonlinear stationary waves
[17].

The deviation of the gate current from its equilibrium
value, δJ

g
 = J

g 
- J

g0
, under the constant current density, j,

results in the motion of the ON/OFF-junction. The velocity
v is equal to

( )[ ]
( ) .

1

T
2

1
0

2
0

2

−

∞−

∞


















+

−+×

×−=

∫ IIII

gg

S
dy

d

Ae

Ae
S

dy

d
de

e

k

jJJ

I

χ

χ
ψ δγχσ

υ

(58)



Z. S. Gribnikov et al.: Switching waves in asymmetric thyristor-like structures...

96 ÔÊÎ, 1(1), 1998
SQO, 1(1), 1998

To calculate the integral we  use the dependence dξ/dy =
= f(ξ) from the stationary solution:
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Using Eqs.(58) and (59) we can write down the formula
for the velocity of the ON/OFF-junction:
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For small deviations of the gate current from the
equilibrium value (δJ

g
 = J

g
 - J

g0
(j)),  Eq.(60) can be written

in the form:

j

Jg

⋅
=

τ
δ

υ .        (62)

The values of τ and I
1
 depend on geometry and material

properties of both bases.
The condition A > 0 which is equivalent to inequality

(31), provides the existence of the ON-state with low
voltage  across the structure and three forward-biased pn-
junctions. The analogous condition for low injection level
in both bases [1] does not include the multiplier b + 1 beside
α

I
. That is why this condition is met for wider range of α

I,II

for high injection level in base II than for low injection
level there. For structures with n-doped base I, the
inequality b > 1 (or even b >> 1 for numerous semicon-
ductor materials) is satisfied. This means that condition
(31) is met for quite long bases I and II. (For example, just
condition α

I
 > (1 + b)-1 should be met for α

II
 = 0.) We have

to note, however, that  the longer base II is, the higher
current density is required to get high injection level over

Fig. 3. The dependences of two terms of Eq.(63), f
I
  and f

II
 for high (dotted lines) and low (solid lines) injection level in base II, on z

II
 for

given values of z
I
; b = µ

n 
/µ

p 
= 2.
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Fig. 4. The same as fig. 3 for b = µ
n 
/µ

p
 = 20.

Fig.5. The dependences of two terms of Eq.(63), f
I
  and f

II
 for high (dotted lines) and low (solid lines) injection level in base II, on z

I
  for

given values of z
II
; b = µ

n 
/µ

p
 = 2.
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all length of base II, and the transition into the ON-state
occurs at quite high current density j. Besides, if the length
of base II exceeds 3-4 diffusion lengths, the voltage  across
the base would become high enough to be taken into
account with the voltages  across pn-junctions.

For uniformly doped bases

),(),( IIIIIIIIIIII zzfzzf τττ += ,        (63)

The dependencies f
I
(z

I
, z

II
) and f

II
(z

I
, z

II
) are depicted in

fig. 3-6. Each figure contains two branches of curves: solid
lines show the dependencies for low injection level in base
II; dotted lines show the dependencies for high injection
level in base II for the same dimension lengths w

II
 of base

II. The inverse diffusion lengths for high and low injection
levels in base II, 21)( IIIIII D τβ = , are different. For low
injection level, D

II
 is the diffusion coefficient of minority

carriers - electrons. For high injection level, D
II
 is the

bipolar diffusion coefficient,  D
II 

= 2D
p
D

n 
/ (D

p 
+ D

n
),  b =

=D
n
/D

p
. Here the values of D

p,n
 being the diffusion

coefficients of electrons and holes. In case of low injection
level, D

I,II
 are just  the diffusion coefficients of electrons

and holes, respectively. Therefore, for the same dimension
length w

II
, the dimensionless length for low level, )(l

IIz ,
and the dimensionless length for high level, )(h

IIz differ:

2/)1()()( bzz l
II

h
II += .

In figs. 3-6 the notation z
II
 refers to low injection level

(z
II
  = )(l

IIz ) for the sake of convenience, because )(l
IIz  does

not depend on the value of  b.

From figs. 3-6, one can see that the growth of injection
level in base II does not change the form of the
dependencies τ(w

I,
, w

II
).   The growth of  injection level

results in increasing of f
I
,  f

II
 for the range of parameters

where the open state of TLS is possible for low injection
level (i.e. condition A(l) > 0 is met). It is worth noting the
following features of the dependencies f

I,II
 (z

I,II
). The

functions f
I,II

 diverge with decreasing of w
II
 up to 0 and

decrease with increasing w
II
. For w

II
 → ∞ for low injection

level f
II
 decreases exponentially and goes very close to 0

while for high injection level f
II
 is saturated for large w

II
.

Therefore the minimum possible value of  f
II
 is much higher

for high injection level than for low injection level. With
decreasing w

I
, the value of  f

I
 goes to 0 while the value of f

II

increases slightly. A decrease in the value of f
II
 with

increasing w
I  

is probably caused by failure of the P+-
emitter influence on base II.

VI. Discussion and Conclusion

In presented paper the problem of the switching wave in
an asymmetric TLS with high injection level in ungated
base II is discussed; the results are compared with
analogous results for a TLS with low injection level in
both bases [9]. The transition to the high injection level
results in re-definition of the parameters and several
restricting inequalities. The field of application of the
presented approach extends greatly, because the regime
of the TLS with high injection level in lightly doped
ungated base II is the typical regime of operation for real

Fig. 6. The same as fig. 5 for b = µ
n 
/µ

p
 = 20.
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TLSs. It is partially due to the fact that the criterion of the
ON-state existence can be met for much wider range of
parameters in case of high injection level in base II than
in case of low injection level there. Especially it is related
to structures with a high value of b = µ

n 
/µ

p
. Formulae (60)

and (62), now being valid for wider range of parameters
and regimes, allow us to describe a nonstationary beha-
vior of a finite gate controlled (or gate modulated) TLS.

Using the presented approach and calculations, we
can point to several ways to increase the speed of operation
of a TLS.

1. Base I should be n-doped. Besides, it should be as
thin as possible. But base I still has to provide high in-
plain conductivity which is proportional to w

I
.

2. A length of base II  should be of the order of 1-2
diffusion length of minority carriers in this base. This
range of w

II
 provides small (almost minimum possible)

values  of f
I
  and f

II
. The lifetime of carriers in base II

should be chosen as small as possible. For this purpose
the base has to be doped by effective recombination
centers. It is the base that should operate as an active
region in a light-emitting regime. A decrease in the values
of τ

II
  and w

II
 is to be restricted by a given value of the

breakover voltage (for a thyristor regime of operation)
and a maximum value of the blocking gate voltage applied
for squeezing. It is also necessary to avoid the pinch-
through of base II and the growth of an ineffective
transistor current (from the cathode to the gate) through
this base.

3. Probably, it is better to use modulation doped
structures instead of uniformly doped ungated base
considered here. This structure which can avoid the pinch-
through, should consist of active layers with low effective
lifetime, τ

II
, and blocking low recombination layers. As

an active region, one can use a layer with a quantum well
(or quantum wells). In this work, only the calculations for
uniformly doped bases I and II are presented in detail
while modulation doped (layered) bases and bases with
heterostructure junctions or quantum wells can be used
for real light-emitting devices. To describe the modulation
doped structure we just have to derive new expressions for
j

i,j
, //

22j ,  j
i,j
, and for J

g0
(j) and τ.

It is worth to emphasize that we consider only
asymmetric TLSs, where in-plain conductivities of bases
differ greatly. If the currents through both bases are of
the same order, or if both bases are gated (i.e. both bases

control the current through a TLS), the calculation would be
much more complicated. For these cases, the stationary wave
approach which uses just one parameter, wave velocity v,
may be inappropriate. However, the approach proposed  here
is valid for all the cases when the gate current flows mainly
through the gated base and may be successfully used for
real asymmetric TLSs.
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ÕÂÈË² ÏÅÐÅÊËÞ×ÅÍÍß Â ÀÑÈÌÅÒÐÈ×ÍÈÕ ÒÈÐÈÑÒÎÐÎ ÏÎÄ²ÁÍÈÕ ÑÒÐÓÊÒÓÐÀÕ Â ÐÅÆÈÌ²
ÂÈÊËÞ×ÅÍÍß ÐÎÇ²ÌÊÍÓÒÎÃÎ ÇÀÒÂÎÐÓ

Ç. Ñ. Ãðèáí³êîâ
²íñòèòóò ô³çèêè íàï³âïðîâ³äíèê³â ÍÀÍ Óêðà¿íè

È. Ì. Ãîðä³îí, Â. Â. Ì³ò³í
Äåòðîéòñüêèé äåðæàâíèé óí³âåðñèòåò ³ì. À. Âåéíà, ÑØÀ

Ðåçþìå. Ðîçãëÿíóòî ñòàö³îíàðíó õâèëþ ïåðåêëþ÷åííÿ â ê³íöåâ³é òèðèñòîðî ïîä³áí³é ñòðóêòðóð³ (ÒÏÑ). Öÿ õâèëÿ
³í³ö³éîâàíà êîíòðîëþþ÷èì ñòðóìîì çàòâîðó I

g
, ÿêèé â³äð³çíÿºòüñÿ â³ä ïåâíîãî ð³âíîâàæíîãî ñòðóìó I

g0
(j), ÿêèé

çàáåçïå÷óº ïîëîæåííÿ íåéòðàëüíî¿ ð³âíîâàãè (òðàíñëÿö³éíî ³íâàð³àíòíî¿) ïåðåõ³äíîãî øàðó ì³æ çàïåðòîþ òà
â³äêðèòîþ îáëàñòÿìè äëÿ äàíî¿ ãóñòèíè ñòðóìó j ó â³äêðèò³é îáëàñò³. Âèâåäåíî çàëåæí³ñòü øâèäêîñò³ õâèë³ v(I

g
, j) â³ä ñòðóìó
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çàòâîðó I
g
 òà ãóñòèíè ñòðóìó j. Ìè ìàºìî ñïðàâó ³ç ñòðóêòóðîþ, â ÿê³é ïðîâ³äí³ñòü çàïåðòî¿ áàçè I íàáàãàòî âûùà, í³æ ïðîâ³äí³ñòü

íåçàïåðòî¿ áàçè II. Ðîçãëÿíóòèé ð³âåíü ³íæåêö³¿ º íèçêèì äëÿ áàçè I òà âèñîêèì äëÿ áàçè II. Ïîêàçàíî, ùî øâèäê³ñòü õâèë³
ïåðåêëþ÷åííÿ (òîáòî øâèäê³ñòü ïåðåõ³äíîãî ïðîöåñó â ÒÏÑ) âèçíà÷àºòüñÿ ãîëîâíèì ÷èíîì ïàðàìåòðàìè áàçè II.
Ïðîäåìîíñòðîâàíî òàêîæ, ùî âèñîêà øâèäê³ñòü ñïðàöþâàííÿ ìîæå áóòè äîñÿãíóòà â ñòðóêòóð³ ç ïîì³ðíî äîâãîþ áàçîþ II
(äîâæèíà áàçè ïîâèííà ïåðåâèùóâàòè 1-2 á³ïîëÿðíèõ äèôóç³éíèõ äîâæèí) òà ìàëèì ÷àñîì æèòòÿ íîñ³¿â â ö³é áàç³.

ÂÎËÍÛ ÏÅÐÅÊËÞ×ÅÍÈß Â ÀÑÑÈÌÅÒÐÈ×ÍÛÕ ÒÈÐÈÑÒÎÐÎ ÏÎÄÎÁÍÛÕ ÑÒÐÓÊÒÓÐÀÕ Â ÐÅÆÈÌÅ
ÂÛÊËÞ×ÅÍÈß ÐÀÇÎÌÊÍÓÒÎÃÎ ÇÀÒÂÎÐÀ

Ç. Ñ. Ãðèáíèêîâ
Èíñòèòóò ôèçèêè ïîëóïðîâîäíèêîâ ÍÀÍ Óêðàèíû

È. Ì. Ãîðäèîí, Â. Â. Ìèòèí
Äåòðîéòñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò èì. À. Âåéíà, ÑØÀ

Ðåçþìå. Ðàññìîòðåíà ñòàöèîíàðíàÿ âîëíà ïåðåêëþ÷åíèÿ â êîíå÷íîé òèðèñòîðî ïîäîáíîé ñòðóêòðóðå (ÒÏÑ). Ýòà âîëíà
èíèöèèðîâàíà êîíòðîëèðóþùèì òîêîì çàòâîðà I

g
, êîòîðûé îòëè÷àåòñÿ îò îïðåäåëåííîãî ðàâíîâåñíîãî òîêà I

g0
(j),

îáåñïå÷èâàþùåãî ïîëîæåíèå íåéòðàëüíîãî ðàâíîâåñèÿ (òðàíñëÿöèîííî èíâàðèàíòíîãî) ïåðåõîäíîãî ñëîÿ ìåæäó
çàïåðòîé è îòêðûòîé îáëàñòÿìè äëÿ äàííîé ïëîòíîñòè òîêà j â îòêðûòîé îáëàñòè. Âûâåäåíà çàâèñèìîñòü ñêîðîñòè
âîëíû v(I

g
, j) îò òîêà çàòâîðà I

g
 è ïëîòíîñòè òîêà j. Ìû èìååì äåëî ñî ñòðóêòóðîé, â êîòîðîé ïðîâîäèìîñòü çàïåðòîé

áàçû I ìíîãî âûøå, ÷åì ïðîâîäèìîñòü íåçàïåðòîé áàçû II. Ðàññìàòðèâàåìûé óðîâåíü èíæåêöèè ÿâëÿåòñÿ íèçêèì äëÿ
áàçû I è âûñîêèì äëÿ áàçû II. Ïîêàçàíî, ÷òî ñêîðîñòü âîëíû ïåðåêëþ÷åíèÿ (ò.å. ñêîðîñòü ïåðåõîäíîãî ïðîöåññà â ÒÏÑ)
îïðåäåëÿåòñÿ ãëàâíûì îáðàçîì ïàðàìåòðàìè áàçû II. Ïðîäåìîíñòðèðîâàíî òàêæå, ÷òî âûñîêàÿ ñêîðîñòü ñðàáàòûâàíèÿ
ìîæåò áûòü äîñòèãíóòà â ñòðóêòóðå ñ óìåðåííî äëèííîé áàçîé II (äëèíà áàçû äîëæíà ïðåâûøàòü 1-2 áèïîëÿðíûõ äèôôóçèîííûõ
äëèíû) è ìàëûì âðåìåíåì æèçíè íîñèòåëåé â ýòîé áàçå.


