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Abstract. A stationary wave of switching is considered in an infinite thyristor-like structure
(TLS).This wave is initiated by the controlling gate current which differs from a certain
equilibrium current J (j) providing a neutrally equilibrium (translationally invariant) position
of the transition layer between a blocked (OFF-) region and an open (ON-) region for a given
current density j in the ON-region. The dependence of the wave velocity v(Jg, j) on the gate
current J and the current density j is derived.We deal with structures in which the conductivity
of gatedgbase I is much higher than the conductivity of ungated base II.The injection level is
considered low for base I and high for base II. It is shown that the velocity of the switching wave
(i.e. the speed of transient processes in TLS) is determined mainly by parameters of base II. It
is also demonstrated that a high speed of operation can be reached in structures with a moderately
long base II (the length of the base should exceed 1-2 bipolar diffusion lengths) and a small
lifetime of carriers in this base.
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I.Introduction

This paper is devoted to the control of the current-
conducting region in a thyristor-like structure. Here, as
well as before [1, 2] we refer to TLS as a certain P'npN°*
structure where two outer layers provide effective injection
of their majority carriers into two inner layers (bases).
One of the bases (base I) is gated. The gate transfers the
controlling current into the base. This current squeezes
the current-conducting region (the ON-region in fig. 1),
and enlarges the OFF-region. The gated base is usually
highly conducting in comparison with the second base
(base II). In silicon controlled rectifiers (SCRs) [3], the
gate current just turns the TLS on and off, while in light-
emitting (LE) and lasing (L) thyristors the gate current
can also control (or modulate) light emission [4, 5]. That
is why we are interested in characteristics of stationary
control of the ON-region (the position of the layer between
the ON- and OFF- regions, called the ON/OFF-junction)
as well as the speed of the ON/OFF-junction in the TLS.

Our further consideration is based on the fact that the
typical structures of LE thyristors [6, 7, 8] differ greatly
from the structures of SCRs. LE thyristors should not
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Fig. 1. a) Considered thyristor-like stucture (TLS) with

b) the distributions of the current density j(y) and
c) the electrical potential y(x) in it.
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usually resist high voltages, therefore the sum of the base
widths, w,+ w,, is much smaller than the initial length of
the ON-region, 2a,, for most LE TLSs. Usually the value
of w + w, does not exceed 0.2-0.3 pm while the initial
length of the ON-region is rarely less than 10 pm. Detailed
descriptions of the LE and L pnpn-diodes (having different
names) with gated either p- or n- bases, are presented in
[10-16]. For such structures the strong inequality
2a,>>w,+ w, admits regimes with the width of the ON/
OFF-junction which is also much greater than w, +w,.
This means that the electrical potential changes quite
smoothly along each base. The distribution of none-
quilibrium carriers in the bases can be considered as nearly
one-dimensional (1D) because the carrier concentrations
change much slighter along pn-junction planes than in
the perpendicular direction. Such distributions allow us
to exploit a quasiadiabatic approach which was
demonstrated earlier [1, 2, 9]. This approach assumes that
the distribution of nonequilibrium carrier concentration
can be represented as a function of x-coordinate and
electric potentials of both bases, U(y) and U, (y). (Here
U, is the voltage drop between the anode P+-emitter) and
base I, U,, is the voltage drop between the anode and base
II). This approximation leads to a self-consistent system
of two nonlinear differential equations for U, (v). This
system can be solved numerically [2] or can be reduced to
one nonlinear differential equation [1] under the condition

O-I >>o-ll H (1)

where 0, are the longitudinal (in-plane) conductivities
of bases LIL

Here we consider a structure where base I is doped
much heavier than base II, so that inequality (1) is satisfied.
We also assume low injection level in base I and high
injection level in base II. For real asymmetric thyristors,
the second assumption is more suitable than the
assumption of low injection level in both bases, as was
considered before [1, 2, 9]. We also keep assuming that
carrier distributions in both bases are functions of the
electric potentials, U, (), and of the voltage across the
entire structure, U, which does not depend on y-coordi-
nate. This representation for high injection level in base
I is valid only if this base is not too long (w,< (3-4)L,
where L is the bipolar diffusion length in base II), so that
the voltage across the base can be neglected in comparison
with the voltage across pn-junctions. Here we consider
the problem of the steady-state position of the ON/OFF-
junction as well as the nonstationary problem which can
be described in the framework of the stationary switching
wave approach [17].

Strictly speaking, the theory of the stationary wave
can be applied only if the gate current and current density
in the ON-region are time-independent. This condition
requires infinitely large values of a and J . However, we
can use this approach to obtain an approximate solution
of the nonstationary problem with comparatively slow
changes of Jg(t), a(t), j(t). These changes lead to a slow
change of the velocity, v(f), which should be constant for a
strict stationary wave approach.
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II. Model and equations. Stationary theory

The gate is attached to the n-base because the mobility of
majority carriers (electrons) is much higher than that of
holes for 4, B, materials we are interested in. We consider
low injection level in this base, so that carrier distribu-
tion is determined by the linear equation of drift and diffu-
sion of minority carriers. The boundary conditions for
this equation are the following:

px=0)= pe”, 2
pa=wq0) = p, ), (3)
where = eU, /(kT) are the dimensionless electrical

potentials of bases I and II; Do, is the equilibrium
concentration of holes in base I at the P+n-junction (jct.1,
x=0). To derive Eq.(3) we have to use the condition of
conservation of quasi Fermi-levels in the inner np-junction
(jet.2): np = const, i.c.

p](W] - O) D/l](wl - 0) :p” (W] + 0) D’l”(WI + 0) (4)

Because of high injection level in base II, we have

Py (W1+0):n11 (W1+0) = N[e‘wn“lh—wu , (5)

p,(w,-0)= N, o 2Wo2lvi-wn) 6)

where N, is the donor concentration in base I at the inner
pn-junction (jct.2), n(w, - 0) eV = p,, 1s the effective hole
concentration there (here p, is greater than the
equilibrium concentration); and ¢, is the dimensionless
value of equilibrium voltage across this np-junction.

As the result of an approximate solution of the drift —
diffusion equation in base I, we obtain:

Ji :j11ew[ _j1zez(%_w") 5 @)

Jé = j21ewl - j;zez(‘ﬂl —Wy) (8)

Since we consider that the values , (¢~ l,U]é% are }1igh
enough, we neglect 1 in comparison withe? ¥ ¥/ In
Eq.(7), j, is the current density through the emitter
P+n-junction (jet.1). We assume that this junction — either
homojunction or heterojunction — provides emission of
the emitter majority carriers — holes — into base I. The
current density through the inner prn-junction (jct.2)
consists of two portions. The hole current density, jé, is
given by Eq.(8). The electron current density, jJ , will be
presented below. The values of j,,, j ., j,,» i, can be
calculated only for specified distributions of both donors
and lifetimes of holes in base L.

For uniformly doped base I where the drift term can be
neglected, we have:

j1n =epm,D, B, /tanhz,, Jéz =ep,D, B, /tanhz, , (9)
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Jor = 0@, = inar, @, =ai =(coshg, )™ (10)
where 3, is the inverse diffusion length of holes in base I:
B,= (D,t,)"* D, is the coefficient of diffusion and 7, is
the lifetime of holes in base I; z, = B, Ow, is the
dimensionless width of base I. We note that even for
uniformly doped base I the concentrations p, and p,,
differ greatly because the latter is not a concentration of
equilibrium holes.

Since we assume high injection level in base II, we can
neglect the acceptor concentration in comparison with
current carrier concentration and write the electron

current in base II in the form:

jo=j——+D, 20 11
" “b+1 "dx’ (b
where b= L //.l and H,, are the mobilities of electrons
and holes in base 11, and D, =2D D /(D D) is the
bipolar diffusion coefflclent D, are the diffusion
coefficients of electrons and holes in base I1, respectively.
We assume that lifetime 7, in base II is constant. The
continuity equation for electron current in base II has to
be solved with the boundary conditions:
Py (W1 +0)= n, (W1 +0) = ny, eV v ,

(12)

v (13)
where 71, and 7, are the equilibrium concentrations in
base II at junctions 2 and 3, respectively. These formulae
are valid because low injection levels are considered in
both base I and the N+-emitter. The expressions of current
densities obtained from Eqs.(11), (12), (13) are written in
the form:

pll(wl + Wu) = nll(wl + Wn) = e

= J(W/ +O) _J ell/. 4 +J ell/ Wy , (14)
Jz = J(w, )L_ jszew' ot j33ew_w" (15)
1+b ’
where
jgz =en,D, B, /tanhz, , j,; =en,D, B, /tanhz, , (16)
J32 = jgzau . Jas= sy, @, =(coshz,)™; (17)

By =(Dy 1y )_]/2 andz,
to base II.

Here we apply one of the main assumptions of our
consideration: the in-plane conductivity of base I is much
greater than that of base II which depends on the electron
concentration n(x). This fact allows us to neglect the gate
current which branches off into base II. So we assume

=pB,w, are the variables related

j(w, +0) 0O
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j(Wz):j2Dj2+Jz OJs (18)

From Eq. (18) we can obtain

j2= 5= (1+ b)[_ j3zewI o+ j3ze¢_w" ] (19)
==tz = (1+b)
x[— j2.€" o) 4 j2€" —nE” T+ ] 20)

Using Eq.(19), (20) we can express the term e* ™" through
the terms ¢ and e”

e’ ¥ = /B2 +B? - B,,

where B, and B, depend on eV

e2y)

By = jn@—a, )A+€ ™) /(2j5,), B =jx€" /-
As a result, the current continuity equation in base I
can be written in the form:

Ko, d"’l—m(l ad)eh +([B2 +B? - By)x

e

|_J @, @+b)+a,(1-a,)-

~ e (1+b—a, (1—(7” ))]: (22)

Ry, )

Generally, a | =1,/ jb, can differ from a,

II1. Homogeneous solution

A homogeneous solution is valid when the gate current
J,=0, and all current densities through the pn-junctions
are equal: j, =j, = j, = j. Actually, the same equalities are
valid for an inhomogeneous stationary solution in the
depth of the ON-region. Thus we can treat the homogenous
solution as a boundary condition for an inhomogeneous
solution at y — oo. From the particular solution of Eq.(22)
(R(y,= 0), we obtain:

@ o LDl
A+b)is

. L2
Jllew' - g
PP '

From Eq.(20), we can calculate the dependencies e? ( j)
and e’ ( j) (the latter being actually an expression for the
voltage-current characteristic of the TLS):

el :.l+o7I j_—éerB 1+;—1g
T

(23)

u= e‘lh Yy = (24)

(25)
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|
(@+b) 115 j H

t -
e = : a+5,j£2rza 1+ Jz
u Jef

OO 10

0 - 0 (26)
xmnjgz"'Hl .L"'Ecrm
E H

jor?

where I = j3,/(2j3,) 1-a})/(1-a, ai) and

= iLA+b)-a, a)/ (@ A+b) +a, ~1)-

We consider more thoroughly two limiting cases: first,
J << jr* and second, j >>] r2. For the first case, the
dependenc1es e¥|j) and e ( ]) are linear (curves 1-3 in
fig. 2 for the current range j/(j %) << 1):

e (N0l (27)

132(1+b)+2r10

e’(j) 0
II 1+b)J33

(28)

Comparing Eq.(27) with Eq.(7) we note that for
J<<jr} we can neglect the %econd term in Eq.(7). This
means that this term (e Yr7¥) instead of ¥ ¥ for low
injection levels in both bases) does not affect TLS’s
behavior. For this limiting case, the solution is very close
to the solution for low injection levels in both bases (see,

(RRY]

j!1= Jcr2

=140 1,1

~

P | 2 P |

log(j)

TogG)  logly)

Fig. 2. The electrical potentials y, y, versus the current density j:

1 =y(); 2—y(@) for m <<1; 3 — y(j) for m >> 1.
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for example, [1]).
For j >> j 1?, the dependence e ( j) is still linear:

e () o).

1} c

(29)

However, the proportionality coefficient here is larger
than for j << j* (see fig. 2). To increase the current
density further, we have to increase U, (or )
substantially because of a noticeable counteraction of the
inner junction (jnc.2). Therefore we have to take into

account the term, proportional to S i) | This
dependence is strong if
a, [a, (A+b)+a, —1] >>1 30)

1+b-d,a,)

Condition (30) is met in structures for which the forward

and inverse transport factors in base I are large (both a,
and @, are close to 1), and the values of b, a,, are far
from the threshold values of the thyristor effect:

a,(l+b)+a, -1>0, 3D

ie.a(l+b)+a,-1isnottooclose to 0. We stress that the
multiplier (1 + b) beside o, which misses in the expression
for low injection level in base II, corresponds to the
transition into the ON-state due to the increasing of
injection level in base II.

For j >>j r* we get:

S P Rl S FSP I
jujss@+b) o

Expression (32) differs from expression (28) not only by
the multiplier (1 +/,,// ) as in Eq.(29) but also by the term
j¥2j¥? instead of 2rj_j in the numerator. We can
introduce the parameter

e’ (i) 0

(32)

1-a}
a, [al (+b)+a, _1]

Zj. _
j(1+b)

to describe two different possible dependencies e ( j).
For m <<1 in the current range j ~ j. 7, the value of e¥
becomes greater, but it is still a linear function with steeper
slope up to the current density

j~j5@+b)*/j.>j.r?, where the curve becomes
nonlinear: ¢ (]) ~ j*? (fig. 2). For m > 1 the transition
from a linear dependence, e” ( j) ~J, to a nonlinear one,
e’ ( j) ~ j*?, occurs in the current range j ~ j_ 7.

Let us remind that this consideration implies low

injection level in base I, so that the inequality

e () <<n, 0) (33)

should be met (see Eq.(2)). Here n,is the donor
concentration in base I at pn-junction 1. Let us discuss
this condition for the simplest case of uniformly doped
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bases. For linear dependence ¢! ( j) , inequality (33) can be
written in the form

i o) _ng
jll pOl r]iz

On the other hand, the linear dependence e’ ( j) is valid
for the current density

2 2

l<<_jcr :n_Dx

jll jll ni2

LHL*Db Pty tanh’ z, 1-a} (34)
H4 Dr, tan’z, a,(@+b)+a, -1

The value of the multiplier in the parentheses of Eq.(34)
can differ from 1 mainly due to a large difference of 7, and
T,. The condition T, << T, can provide a regime of low
injection level in base I up to high current density.

IV. Inhomogeneous stationary solution

Now we are interested in Eq.(22) with a non-zero gate
current, J, that squeezes the current-conducting region
of a TLS. For

BZ >> B} (35)
Eq. (22) has the form:
KT 9 _
e 'dy?

a@+b)+a, -1 w(w)e(e - _ > (36)

= =R
% 1-q, 1re /A W)

where X = - () <0, A=[1-a (1 -a(l+b)]/[a,+

+a,(1+ b) =11 = €& 1e¥ =i (1 + b))/ (,(1 +b) a, +
+2j r) (the second part of the expression is derived from
Eqs.(27), (28) which are valid if j << jr?). For the
stationary solution, the transition from the regime with
low injection level in both bases to the regime with high
injection level in base II and low injection level in base I
(under condition (35)) results only in a new definition for
the transport factor of base I, now being equal to a (1 + b)
instead of @, for the low injection. This fact determines
the choice of doping for the bases. It is clear that n-doped
base I and p-doped base II structure, as we consider from
the beginning, is preferable, because for most of the
considered semiconductors b >> 1, and the condition of
open state for the thyristor — inequality (31) — is satisfied
for a wider range of a,.
For j <<jr* inequality (35) can be modified to:

* @ a+h)’@a-ap)’

j << (J22
(all +a, (1+b) _1)2

: 37
4j5, 37)
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while the condition j << 7* has the form:

j << (J'é_lz/ ’ O (1+b)-ay)’ _ -

4z (o, +a,@+b)-Da-a,a) )
Inequalities (37) and (38) are not identical, but for most
cases they differ only slightly. A detailed stationary
solution for the distributions {/(y), j(y) for low injection
level in both bases can be found in [1]. We emphasize, that
eq.(36) differs from the analogous equation in [1] only by
definitions of the parameters. From the solution of Eq.(36)
we obtain that for infinite TLS there existsthe unique value
of the gate current, J 00 which pr0V1des steady-state
position of the ON/OFE- layer for a given current density
in the depth of the ON-region:

J =

g0 Il DJ (39)
The current density can be presented as j = J /(2a), where
J, is the full current in the ON-region (in A/ cm) and 2a is

an effective width of the ON-region (see fig. 1) where

_2kT

l,=—0,
e

1-a,

A+ Ainf+A7)-1 4

V. Stationary wave of switching

We assume here that inertia of the transient processes in
TLS is determined mainly by the drift-diffusion and
recombination phenomena in quasineutral bases I and II;
therefore we can neglect the charging processes in pn-
junctions which are much faster. Therefore we have to
solve two equations of continuity. The first of them is for
holes in base I:

-p/T,-0p/ot, (41)

The second of them is the analogous nonstationary
equation for electrons in base II. Here as well as in discussed
above stationary problem, we neglect G,.), in comparison
with G, Besides, we assume that the current density j
changes sllghtly along y-axis over the lengths of the order
of w,,. To get the solution in the form of the stationary
wave, we introduce new variables x, Y =y - vt instead of x,
¥, t; thus Eq.(41) is modified to

div jp =

0, /0x=—p/T, —UAP/Jy. (42)

Equation (42) has to be solved with boundary conditions
(2), (3) for ¢, , (). For the small velocity and for uniformly
doped base I (i.e. j, = -D, Op/0x, we can write the
approximate solution of Eq. (42) in the form:

sinh, w, -~x)
sinhB,w,

sinhp, x N

p(xy) Up(0,y) SinhB. w

+p(w, )
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v 6p(0 y) g coshBI (W, —x) _
2D [3, oy sinhB,w,
_ costB,w; inh, (w —x)0
T enfBw) O “3)
LU op(w;,y) J costB x  coshB,w sinhB, xUJ
D6 psohgw o (snfBw) O

Here we have neglected terms which are proportional to
v? and the other higher degrees of v. Now we can calculate
the current densities:

jl (y) = _ED| ap/aX |>(=0: jllewl - jlzez(wl —y) +

+ Ui (Allewl _ Alzez(wl ¢, )) (44)
oy
j5(y) =—eD,ap/ dx |y = j€ = 5™ ) +
+Ui (AZlewl _A/22e2(w| ¥y ))’ (45)
oy
where i j5, are the expressions from (9), (10) and
A _epy Dcoshz sinhz, -z, A =2 Poz
1= 28, Sink? 7, v A =An Doy’ (46)
ep,; .z, coshz, —sinhz Poo
A, =— , Aia = A, —22
2 2B sinh? z, SR 47

Then we can derive an expression, which is similar to
Eq.(43), for distribution of electrons, n(x, y), in base 11
with high injection level in it, and calculate current

densities:

. . b on

iz =1, 1+b +eDh, x |x=w, +o, (48)
on

] - J3 e(1+ b)DII _|x=w. W, o (49)

As a result we can write down:
j» = s =(L+b)x

x[ﬂ3 el[l W, _J e(/h Wy +U (A e‘l/ ' _A e‘lh Wy )D,(SO)

= (bjas + st)ew . = (bj, + J// e+

+ua—y[(bA33 R O A e NI
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where

_eny DcoshzII sinhz, -z, A =2
’ 22 33

A

%728, sinh? z, > (52)
A = — en, EF” coshz, —-sinhz, A =2 N

32 28, sint? z, v Nz = Az Ny ° (53)

Taking into account inequality (35) and the equation
i, =j,+jY, we obtain for uniformly doped base I:

ew| g D

0 Jz]_e +U a/ay [A21ew| _(A " _Asz)(ewl Yy +ew_wu ) (54)
(1 all )(A;2 +A32e e )

Using Eqgs.(44), (50) and (54), we derive the equation which
is similar to eq.(36) but for nonstationary case:

KT _ d%x Od
—a =R(x)+u " 5—-S (x)+
e 7 ay (x) Ty  (X)
w'lA-o d
+
1+ef /A dy S X )D ©3)

Equation (55) differ from Eq.(36) by the proportional to v
term on the RHS of the equation, where

1+b j21 E(\szex /A_/\aa
S (A, + 0=
(X)=e(Ay -0y, s 1+e' /A ), (56)
)‘//
S, () =€ (12 Ef\—zz), 57

_all

and X =y, —¢, (),
y=@Q+b)a, /(l-a,),0=01+b)/L-a,).

We emphasize that Eq.(55) is derived under the several
conditions. First, the velocity is small, i.e. we restrict our
consideration by the linear on u terms. Second, the
conditions Eq.(35) and j << [r* are met (i.e. the strong
inequalities (37) and (38) are satisfied). To solve eq.(50)
we can exploit the theory for nonlinear stationary waves
[17].

The deviation of the gate current from its equilibrium
value, 5] Jo= I under the constant current density, j,
results in the motion of the ON/OFF-junction. The velocity
v is equal to

v :le_ngo(j)Jx
XQO-| _e‘lh

kT yeX/A 6d¢
A Id)( 3 1+eX/A dy

Sy % -(58)
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To calculate the integral we use the dependence d&/dy =
= f(§) from the stationary solution:
k_T d_X =

ey =PI

(39)

where

¢()E’

Using Eqs.(58) and (59) we can write down the formula
for the velocity of the ON/OFF-junction:

L+ A)(z+ A - (1—2)/(1+A)§2’

InfL+A™)-(1+A)*

L 35-35(0)
2),, 0 ° (60)

Where
-1 Eﬁdzb(z)m\o +A L+ 2Z/ AT A1+ z/A)‘ZQ 61)
1

, 9 A+h)jy,
(1—0” )2 Jas

a,(1+b
No=Ay + u{+D) A (A5 — 01 A3,) ,
1l-a,

21

12z=14
2z=10
3 2=05
4 z=03
52=02

b

jll(/\32 _/\/2/2)

l+a,
Mmoo EW“' s @-ay)

all

1+b ju
N, =-a, = (Ag +A5)
1-a, Js
For small deviations of the gate current from the
equilibrium value (d]g =J,- Jgo(j)), Eq.(60) can be written

in the form:
al g
v=—>
0 (62)

The values of 7 and /, depend on geometry and material
properties of both bases.

The condition 4 > 0 which is equivalent to inequality
(31), provides the existence of the ON-state with low
voltage across the structure and three forward-biased pn-
junctions. The analogous condition for low injection level
in both bases [1] does not include the multiplier » + 1 beside
a,. That is why this condition is met for wider range of a ,
for high injection level in base II than for low injection
level there. For structures with n-doped base I, the
inequality b > 1 (or even b >> | for numerous semicon-
ductor materials) is satisfied. This means that condition
(31) is met for quite long bases I and II. (For example, just
condition a,> (1 + b)' should be met for a, = 0.) We have
to note, however, that the longer base II is, the higher
current density is required to get high injection level over

%

Fig. 3. The dependences of two terms of Eq.(63), f, and f,, for high (dotted lines) and low (solid lines) injection level in base II, on z,, for

given values of z; b= 1, //Jp: 2.
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0.2

1 " i " ! " 1 N

Fig. 6. The same as fig. 5 for b = u, /yp =20.

all length of base II, and the transition into the ON-state
occurs at quite high current density j. Besides, if the length
of base II exceeds 3-4 diffusion lengths, the voltage across
the base would become high enough to be taken into
account with the voltages across pn-junctions.

For uniformly doped bases

T:TI 1:I(ZI’ZII)-'-TII 1:II(ZI’ZII)’ (63)

The dependencies f(z,, z,) and f,(z,, z,) are depicted in
fig. 3-6. Each figure contains two branches of curves: solid
lines show the dependencies for low injection level in base
II; dotted lines show the dependencies for high injection
level in base II for the same dimension lengths w, of base
II. The inverse diffusion lengths for high and low injection
levels in base II, B, =(D,1,)"?, are different. For low
injection level, D, is the diffusion coefficient of minority
carriers - electrons. For high injection level, D, is the
bipolar diffusion coefficient, D, = ZDPDn/ (Dp+ D), b=
=D /D . Here the values of D being the diffusion
coefficients of electrons and holes. In case of low injection
level, D, are just the diffusion coefficients of electrons
and holes, respectively. Therefore, for the same dimension
length w,, the dimensionless length for low level, z{’,
and the dimensionless length for high level, z{" differ:

" =z"\/@+b)/2.

In figs. 3-6 the notation z, refers to low injection level
(z, = z{’) for the sake of convenience, because z{) does
not depend on the value of b.
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From figs. 3-6, one can see that the growth of injection
level in base II does not change the form of the
dependencies T(w,, w,). The growth of injection level
results in increasing of f, f, for the range of parameters
where the open state of TLS is possible for low injection
level (i.e. condition A” > 0 is met). It is worth noting the
following features of the dependencies f,, (z,,). The
functions f, , diverge with decreasing of w;, up to 0 and
decrease with increasing w,. For w, — oo for low injection
level f, decreases exponentially and goes very close to 0
while for high injection level f}, is saturated for large w,,.
Therefore the minimum possible value of f is much higher
for high injection level than for low injection level. With
decreasing w, the value of f, goes to 0 while the value of £,
increases slightly. A decrease in the value of f,, with
increasing w, is probably caused by failure of the P~-
emitter influence on base II.

VI. Discussion and Conclusion

In presented paper the problem of the switching wave in
an asymmetric TLS with high injection level in ungated
base II is discussed; the results are compared with
analogous results for a TLS with low injection level in
both bases [9]. The transition to the high injection level
results in re-definition of the parameters and several
restricting inequalities. The field of application of the
presented approach extends greatly, because the regime
of the TLS with high injection level in lightly doped
ungated base II is the typical regime of operation for real
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TLS:s. It is partially due to the fact that the criterion of the
ON-state existence can be met for much wider range of
parameters in case of high injection level in base II than
in case of low injection level there. Especially it is related
to structures with a high value of b = i, /up. Formulae (60)
and (62), now being valid for wider range of parameters
and regimes, allow us to describe a nonstationary beha-
vior of a finite gate controlled (or gate modulated) TLS.

Using the presented approach and calculations, we
can point to several ways to increase the speed of operation
of a TLS.

1. Base I should be n-doped. Besides, it should be as
thin as possible. But base I still has to provide high in-
plain conductivity which is proportional to w,.

2. A length of base II should be of the order of 1-2
diffusion length of minority carriers in this base. This
range of w, provides small (almost minimum possible)
values of f; and f,. The lifetime of carriers in base II
should be chosen as small as possible. For this purpose
the base has to be doped by effective recombination
centers. It is the base that should operate as an active
region in a light-emitting regime. A decrease in the values
of T, and w, is to be restricted by a given value of the
breakover voltage (for a thyristor regime of operation)
and a maximum value of the blocking gate voltage applied
for squeezing. It is also necessary to avoid the pinch-
through of base II and the growth of an ineffective
transistor current (from the cathode to the gate) through
this base.

3. Probably, it is better to use modulation doped
structures instead of uniformly doped ungated base
considered here. This structure which can avoid the pinch-
through, should consist of active layers with low effective
lifetime, 7, and blocking low recombination layers. As
an active region, one can use a layer with a quantum well
(or quantum wells). In this work, only the calculations for
uniformly doped bases I and II are presented in detail
while modulation doped (layered) bases and bases with
heterostructure junctions or quantum wells can be used
for real light-emitting devices. To describe the modulation
doped structure we just have to derive new expressions for
j[.J, jgz, j[.J, and for Jgo(]‘) and T.

It is worth to emphasize that we consider only
asymmetric TLSs, where in-plain conductivities of bases
differ greatly. If the currents through both bases are of
the same order, or if both bases are gated (i.e. both bases

control the current through a TLS), the calculation would be
much more complicated. For these cases, the stationary wave
approach which uses just one parameter, wave velocity v,
may be inappropriate. However, the approach proposed here
is valid for all the cases when the gate current flows mainly
through the gated base and may be successfully used for
real asymmetric TLSs.
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Solid-

XBWJII HEPEK/IIOYEHHS BACUMETPUYHUX TUPUCTOPO ITIOAIBHUX CTPYKTYPAX B PEKUMI

BUKJ/IIOYEHHS PO3IMKHYTOI'O 3ATBOPY

3. C. I'pubnixos
Incmumym ¢izuxu nanienpogionuxie HAH Ykpainu

U. M. I'opoion, B. B. Mimin

Jempoiimcokuii oepycasnuit ynieepcumem im. A. Beina, CIIIA

Pe3rome. Po3risHyTO cTamioHapHy XBWIIO HNEPEKIIOYEHHs B KiHIEBid Tupuctopo momibHiit crpykrpypi (TIIC). s xBuns
iHilliHOBaHA KOHTPOJIOIYUM CTPYMOM 3aTBOPY [, AKMH BiIpi3HAETbCA BiJ MEBHOTO PiBHOBAaXHOTO CTpyMmy [ (j), Akuii
3abe3meuye MOJNOKEHHS HEUTpadpHOI PiBHOBAru (TPaHCIALIWHO iHBapiaHTHOI) MepeXilHOTO Mmapy MiX 3alepTolo Ta
BIZIKPUTOIO 00JACTSIMHU JUTS IaHOT I'YCTHHHU CTPYMY j Y BiIKpHUTiii oOnacti. BuBeneHo 3ane)HiCTh IBUIKOCTI XBHJII v(]g, J) BiO cTpymy
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3aTBOPY /, Ta TCTHHH CTpyMY j. Mi Ma€MO CripaBy i3 CTPyKTYpOXO, B sIKiii IPOBiAHICTH 3ariepToi 6a3u | Habararo BBIIIA, HiX MPOBIAHICTH
He3anepT01 6a3u II. Po3rnﬂHyTMH piBeHb imkekuii € HU3KkuM Juist 6a3u | Ta Bucokum st 6asu 1. ITokasaHo, 10 NIBHAKICTH XBHIII
nepexiIodeHHs (To0To mMBUAKICTE nmepexigHoro npouecy B TIIC) BH3HaYaeTbCs TOJOBHUM YHMHOM Napamerpamu Oasm II.
IIpogeMOHCTPOBaHO TaKOXK, IO BHCOKA HIBUAKICTH CIIPAIIOBaHHS MOXe OyTH JOCATHYTa B CTPYKTYpi 3 HOMipHO AoBroro 6asoro I1
(moBxuHa 6a3¥ MOBUHHA NEPEBUIYBaTH 1-2 GIMOISIPHUX ANQY3IHHIX TOBXKUH) Ta MAJIUM YaCOM >KHTTS HOCITB B Iii 6a3i.

BOJIHBI NIEPEK/IIOYEHUSI BACCUMETPUYHBIX TUPUCTOPO NIOJOBHBIX CTPYKTYPAX B PEXKUME
BBIKJIIOUEHUSI PASOMKHYTOI'O 3ATBOPA

3. C. I'puonuxos
Hucmumym pusuxu nonynposoonuxoe HAH Ykpaunwt

H. M. I'opouon, B. B. Mumun
Jempoiimckuil zocyoapcmeennutii ynugepcumem um. A. Beiina, CIIIA

Pe3rome. PaccMoTpeHa cranmoHapHas BOJIHA MEPEKIIOYECHUST B KOHEYHOW THpHCTOpOo momobHoi crpykrpype (TIIC). DTa BoITHA
MHHMIIMUPOBAHA KOHTPOJMPYIOUIMM TOKOM 3aTBOpa [ , KOTOPBIH OTJIMYAaeTCs OT ONpENe]CHHOr0 paBHOBECHOTO Toka [ (f),
00eceynBaloNIero Mmoj0XeHne HEUTPaIbHOTO paBHOBECHUS (TPaHCIANHNOHHO WHBAPUAHTHOTO) MEPEXOJHOTO CIIOS MEXKIY
3amepTod M OTKPBITOW 00JIACTAMH Ui JaHHOW MJIOTHOCTH TOKAa j B OTKPHITOH oOnacTH. BriBeneHa 3aBHCHMOCTB CKOpOCTH
BOJTHBI v([ j) oT Toka 3aTBOpa I, m moTHOCTH TOKA ] MBI EMeeM JeNo CO CTPYKTYpPOH, B KOTOPOH MPOBOJMMOCTH 3alepTOi
6asel | MHOTO BbILIE, 4eM nposo;mMocn, He3anepToil 6a3bl II. PaccmarpuBaeMblil ypOBEHb MHXKEKIMH SIBISETCS HU3KHM JUIS
6a3bl | u BeicokuM i 6a3bl 1. IToka3zaHo, 9TO CKOPOCTH BOJHBI MEPEKIIOUEHUS (T.e. CKOpocTh mepexoqnoro mpouecca B TIIC)
ompezenseTcs TIaBHBIM 00pa3oM mapamerpamu 0a3sl 1. [IporeMOHCTpHpPOBAaHO TakKe, YTO BBICOKAs CKOPOCTH CpadaThIBAaHUS
MOXET OBITh TOCTHTHYTA B CTPYKTYPE ¢ yMEPEHHO JTHHHOM 0a3oii I1 (ytnHa 6a3bl 1omKHA IpeBhINIaTh 1-2 OUNONApHBIX 1} (dY3HOHHBIX
IUTHHBI) ¥ MaJIBIM BpEeMEHEM >KU3HH HOCUTEIEH B 3TOH Oase.
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