Semiconductor Physics, Quantum Electronics and Optoelectronics, 1 (1) P. 121-134 (1998).


References

1. M. Malmsten, Biopolymers at interfaces, Marcel Dekker, Inc. (1998).
https://doi.org/10.1201/9780824746391
2. S. Lofas, M. Malmqvist, I. Ronnberg, E.Stenberg, Bo Liedberg and I.Lundstrom, Bioanalysis with surface plasmon resonance, Sensor and Actuators,B 5, pp. 79-84 (1991).
https://doi.org/10.1016/0925-4005(91)80224-8
3. Yu.M.Shirshov, V.I.Chegel, Yu.V.Subbota, A.E.Rachcov, T.A.Sergeeva, Determination of polarizability and surface concentration of biomolecules using surface plasmon resonance experiment, SPIEProc., 2648, pp. 118-123 (1995).
https://doi.org/10.1117/12.226151
4. S.Spinke, M.Liley, F.J.Schmitt, H.S.Guder, L.Angermaier, W.Knoll,Molecular recognition at self-assembled monolayers: optimization of surface functionalization, J.Chem.Phys.,99, pp. 7012-7019 (1993).
https://doi.org/10.1063/1.465447
5. F.-J. Schmitt, L.Haussling, H.Ringsdorf, W.Knoll, Surface Plasmon studies of specific recognition reactions at self-assembled monolayers on gold, Thin Solid Films,210-211, pp. 815-817 (1992).
https://doi.org/10.1016/0040-6090(92)90412-5
6. G.S.Retzinger, B.C.Cook, A.P.Deanglis, The binding of fibrinogen to surfaces and the identification of two distinct surface-bond species of the protein, J. Colloid Interface Sci.,168, pp. 514-521 (1994).
https://doi.org/10.1006/jcis.1994.1449
7. J.E.Lee and S.S.Saaverda, Molecular orientation in heme protein films adsorbed to hydrophilic and hydrophobic glass surfaces, Lagmuir,12, pp. 4025-4032 (1996).
https://doi.org/10.1021/la960253z
8. L.-H. Guo, J.S.Facci, G.McLendon, r.Mosher, Effect of gold topography and surface pretretment on the self-assembly of alkanethiol monolayers, Langmuir,10, pp. 4588-4593 (1994).
https://doi.org/10.1021/la00024a033
9. E.W.Salzman, E.W.Merrill, Hemostasis and thrombosis: basic principles and clinical practice, Lippincott, Philadelphia (1987).
10. D.G.Myszka, Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors, Current Opinion in Biotechnology,8, pp. 50-57 (1997).
https://doi.org/10.1016/S0958-1669(97)80157-7
11. R.Karlsson, H.Roos, L.Fagerstam, and B.Persson, Kinetic and concentration analysis using BIA technology, Methods: A companion to methods in enzymology, 6, pp. 99-110 (1994) .
https://doi.org/10.1006/meth.1994.1013
12. Y. Ebara, K.Itakura, Y.Okahata, Kinetic studies of molecular recognition based on hydrogen bonding at the air-water interface by using a highly sensitive quartz-crystal microbalance, Langmuir, 12, pp. 5165-5170 (1996).
https://doi.org/10.1021/la9603885
13. A.J.Ricco, R.M.Crooks, G.C.Osbourn, Surface acoustic wave chemical sensor arrays: new chemically sensitive interfaces combined with novel cluster analysis to detect volatile organic compounds and mixtures, Acc.Chem.Res.,31(5), pp. 289-295 (1998).
https://doi.org/10.1021/ar9600749
14. R.J.Green, J.Davies, M.C.Davies, C.J.Roberts and S.J.B.Tendler,Surface plasmon resonance for real time in situ analysis of protein adsorption to polymer surfaces, Biomaterials,18, pp. 405-413 (1997).
https://doi.org/10.1016/S0142-9612(96)00141-X
15. A. Bernard and H.R.Bosshard, Real-time monitoring of antigen-antibody recognition on a metal oxide surface by an optical grating coupler sensor, Eur.J.Biochem,230, pp. 416-423 (1995).
https://doi.org/10.1111/j.1432-1033.1995.0416h.x
16. A.C.Malmborg, A.Michaelsson, M.Ohlin, B.Jansson, C.A.K.Borrebaeck, Real time analysis of antibody-antigen reaction kinetics,Scand.J.Immunol., 35, pp. 643-650 (1992).
https://doi.org/10.1111/j.1365-3083.1992.tb02970.x
17. A.Horenstein, C.Poiesi, M.Camagna, L.de Monte, M.Mariani, A.Albertini, F.Malavasi, Biosensor analysis of antigen-antibody interactions a priority step in the generation of monoclonal bispecific antibodies, Cell Biophysics,24/25, pp. 109-117 (1994).
https://doi.org/10.1007/BF02789221
18. P.End, I.Gout, M.J.Fry, G.Panayotou, R.Dhand, K.Yonezawa,M.Kasuga, M.D.Waterfield, A biosensor approach to probe the structure and function of the p85a sabunit of the phosphatidylinositol 3-kinase complex, J. Biol. Chem., 268(14), pp. 10066-10075 (1993).
19. J.A. de Feijter, J.Benjamins and F.A.Veer, Ellipsometry as a tool to study the adsorptiom behaviour of polymers at the air-water inter-face, Biopolymers,17, p. 1759 (1978).
https://doi.org/10.1002/bip.1978.360170711
20. D. Clerc, W.Lukosz, Integrated optical output grating coupler as re-fractometer and (bio-) chemical sensor, Sensor and Actuators, B 11,pp. 461-465 (1993).
https://doi.org/10.1016/0925-4005(93)85288-L
21. M.Malmsten, J.-A.Johansson, N.L.Burns, H.K.Yasuda, Protein adsorption at n-butane plasma polymer surfaces, Colloids and Surfaces B: Biointerfaces,6, pp. 191-199 (1996).
https://doi.org/10.1016/0927-7765(95)01255-9
22. R.Reiter, H.Motschmann, W.Knoll, Ellipsometric characterization of streptavidin binding to biotin-functionalized lipid monolayers at the water/air interface, Langmuir,9, pp. 2430-2435 (1993).
https://doi.org/10.1021/la00033a028
23. V.Razumas, T.Nylander, T.Arnebrant, An ellipsometric and electrochemical study of microperoxidase-8 and-11 adsorption on platinum and gold surfaces, J. Colloid Interface Sci.,164,pp. 181-189 (1994).
https://doi.org/10.1006/jcis.1994.1156
24. A.G.Frutos and R.M.Corn, SPR of ultrathin organic films, Anal. Chem. News & Features, 70, pp. 449A-455A (1998).
https://doi.org/10.1021/ac981909r
25. W.Knoll, Optical characterization of organic thin films and interfaces with evanescent waves, MRS Buiietin, 16(7), pp. 29-39 (1991) .
https://doi.org/10.1557/S0883769400056517
26. E.Kretchmann, Die bestimmung optischer konstanten von metallen durch anregung von oberflachen plasmaschwingungen, Z.Phys.,241(4), pp. 313-324 (1971).
https://doi.org/10.1007/BF01395428
27. R.M.A. Azzam, N.M.Bashara, Ellipsometry and polarized light,North-Holland, Amsterdam (1977).
28. S.R. Wasserman, G.M.Whitesides, I.M.Tidswell, M.Ocko,P.S.Pershan, J.D.Axe, J.Am.Chem.Soc.,111, pp. 5852-5861 (1989).
https://doi.org/10.1021/ja00197a054
29. R.L.Earp, R.E.Dessy, Surface plasmon resonance, Wiley Publishing(1997).
30. G.V.Beketov, Y.M.Shirshov, O.V.Shynkarenko, V.I.Chegel, Surface plasmon resonance spectroscopy: prospects of superstrate refractive index variation for separate extraction of molecular layer parameters,Sensor and Actuators,B 48, pp. 432-438 (1998).
https://doi.org/10.1016/S0925-4005(98)00081-1
31. S.A.Kostioukevich, Yu.M.Shirshov, E.P.Matsas, A.V.Stronski, Yu.V.Subbota, V.I.Chegel, P.E.Shepelyavi, Application of surface plasmon resonance for the investigation of ultrathin metal films, SPIEProc.,2648, pp. 144-151 (1995).
https://doi.org/10.1117/12.226156
32. K.V.Kostioukevich, B.1A.Snopok, S.A.Zinio, Y.M.Shirshov, I.N.Kolesnikova, E.V.Lugovskoi, New opto-electronic system based on the surface plasmon resonance phenomenon: application to the concentration determination of DD-fragment of fibrinogen, SPIEProc.,p. 3414 (1998).
https://doi.org/10.1117/12.323542
33. T.V.Varetskaya, Mikrogeterogeneity of fibrinogen. Cryofibrinogen,Ukrainskii Biokheimichnii Zhurnal,32, pp. 13-24 (1960) (in Ukrainian).
34. V.A.Belitzer, T.M.Pozdniakova, T.P.Ugarova, Light and heavy fractions of fragment D: preparation and examination of fibrin binding properties, Thromb.Rev.,19, pp. 807-814 (1980).
https://doi.org/10.1016/0049-3848(80)90008-0
35. S.A.Olexa, A.Z.Budzynski, R.F.Doolittle, B.A.Cottrell, Th.S.Greens, Structure of fragment E species from human cross-linked fibrin, Biochemistry,20, pp. 6139-6145 (1981).
https://doi.org/10.1021/bi00524a035
36. B.H.Lerner, How to make a hibridoma, Yale Jornal of Biology and Medicine,54, pp. 387-402 (1981).
37. J.C.Stover, Optical scattering: measurement and analysis, McGraw-Hill, Inc.(1990).
38. T.M.Pozdniakova, Mechanism fibrin self-assembled, Biohimia jivotnihi cheloveka,13, pp. 27-36 (1989) ( in Russian).
39. L.V. Medved, S.V. Litvinovich, Multidomen structure molecule of fibrinogen, Biohimia jivotnih i cheloveka,13, pp. 18-27 (1989) (in Russian).
40. E.V.Lugovskoi, E.M.Makogonenko, V.S.Chudnovets, S.G.Derzskaya, G.K.Gogolinskaya, I.N.Kolesnikova, A.M.Bukhanevich, I.N.Sitak, E.D.Lyashko, S.V.Komissarenko, The study of fibrin polymerization with monoclonal antibodies, Biomedical science,2, pp. 249-256(1991).
41. R.F.Doolittle, Fibrinogen and fibrin, Ann. Rev. Biochem.,53,pp. 195-229 (1984).
https://doi.org/10.1146/annurev.bi.53.070184.001211
42. R.Wigren, H.Eluring, R.Erlandsson, S.Welin, I.Lundstrom, Structure of adsorbed fibrinogen obtained by scanning force microscopy, FEBS,280, pp.225-228 (1991) .
https://doi.org/10.1016/0014-5793(91)80298-H
43. Y.Shirshov, B.Snopok, K.Kostioukevich, E.Shinkarenko, I.Gavriluk, I.Kolesnikova, E.Lugovskoi, S.Komissarenko, Fibrinogen at the gold surface: peculiarities of the adsorption kinetic and film structure, Proc.ECOF, 7,pp. 393-395, Potsdam, Germany (1998).
44. I.Schmitz, M.Scheiner, G.Friedbacher, M.Grasserbauer, Tapping-mode AFM in comparison to contact-mode AFM as a tool for in situ investigations of surface reactions with reference to glass corrosion, Anal.Chem., 69, pp. 1012-1018 (1997).
https://doi.org/10.1021/ac9607020
45. K.A.Peterlinz and R.Georgiadis, In situ kinetics of self-assembly by surface plasmon resonance spectroscopy, Langmuir,12,pp. 4731-4740 (1996).
https://doi.org/10.1021/la9508452
46. M.Malmsten, Ellipsometry studies of protein adsorption at lipid surfaces, J. Colloid Interface Sci., 168, pp. 247-254 (1994).
https://doi.org/10.1006/jcis.1994.1416
47. M.Malmsten, B.Lassen, Competitive adsorption at hydrophobic surfaces from binary protein systems, J. Colloid Interface Sci., 166,pp.†490-498 (1994).
https://doi.org/10.1006/jcis.1994.1322
48. C.F.Lu, A.Nadarajan, K.K.Chittur, A comprehensive model of multiprotein adsorption on surfaces, J.Colloid Interface Sci.,168,pp.†152-161 (1994).
https://doi.org/10.1006/jcis.1994.1404
49. V.P.Zhdanov, B.Kasemo, Monte Carlo simulations of the kinetics of protein adsorption, Surf. Rev. Lett., 5(2), pp. 615-634 (1998).
https://doi.org/10.1142/S0218625X98001006
50. Yu.A.Ovchinnikov, Bioorganic chemistry, M: Prosveshenie (1987).