Semiconductor Physics, Quantum Electronics and Optoelectronics, 5 (1) P. 063-070 (2002).


References

1. 1. D.Coiante, L.Barra, Can photovoltaic become an effective energy option, Solar Energy Materials and Solar Cells, 1992, v.27, pp.79-89.
https://doi.org/10.1016/0927-0248(92)90045-Q
2. V.A.Grilikhes, Space solar energy station, Leningrad, ì Naukaî, 1986.
3. M.Meyer, R.A.Metzger, Flying High: The commercial Satellite Industry Converts to Compound Semiconductor Solar Cells, Compound Semiconductor, 1997, Special Issue, pp.40-42.
4. A.L.Fahrenbruch, R.H.Bube, Fundamentals of solar cells. Photovoltaic solar energy conversion, N.-Y., Academic Press, 1983.
https://doi.org/10.1016/B978-0-12-247680-8.50013-X
5. J.J.Lion, W.W.Wong, Comparison and optimization of the performance of Si and GaAs solar cells, Sol. Energy Materials and Solar Cells, 1992, v.28, pp.9-28.
https://doi.org/10.1016/0927-0248(92)90104-W
6. M.Tsugami, K.Mitsui, ìGaAs solar cells by MOCVDî, Optoelectronics, Devices and Technologies, 1989, v.4, n.1,pp.59-66.
7. J.J.Liou ìPhysical models for predicting the performance of Si/Si, AlGaAs/GaAs and Si/SiGe solar cells, Solar Energy Materials and Solar Cells, 1993, v.29, p.261-276.
https://doi.org/10.1016/0927-0248(93)90041-Z
8. Current Topic in Photovoltaics, Edit.T.J.Coutts, J.D.Meakin, NY. Academic Press, 1985, pp.194-198.
9. A.A.Alaev, B.M.Andreev, ìRadiation defect annealing in AlGaAs/GaAs hetero-photoelements at working with sun concentrator, ìHeliotechnicsî, n.5, p.32-35.
10. V.M.Andreev, V.S.Kalinovskiy, V.R.Larionov, E.O.Strugova,V.D.Rumyanzev, ì Characteristics of AlGaAs / GaAs photodiodes on low energy ionization radiationî Fiz. Tekh. Polupr., 1994, v.28, n.2, pp.338-341.
11. V.M.Andreev, G.M.Gusinskiy, ìRadiation influence on AlGaAs / (p-n) GaAs heterostructure photoelectric parameters, Fiz. Tekh. Polup., 1988, v.22, n.8, p.1391-1395.
12. V.M.Andreev, V.A.Grikhiles, V.D.Rumyanzev, Photoelectric conversion of sun concentrated radiation, Leningrad, ìNaukaî, 1989, 320p.
13. G.M.Grigoreva, V.A.Grikhiles, ìRadiation effects in heterostructure AlGaAs / GaAs photoelements on high exposition and temperatureî,îHeliotekhnicaî, 1989, n.1, p.8-12.
14. V.M.Andreeva, G.M.Grigoreva, Dependence of -AlGaAs- - GaAs-Ô- GaAs heterostructure degradation on recombination precesses, îHeliotekhnicaî, 1988, n.2, p.84-85.
15. V.M.Botnaryuk, L.V.Gorchak, Photoelectric parameter degradation in hetero photo converters under electron radiation, îHeliotekhnicaî, 1990, n.1, p.6-7.
16. M.Ya.Bakirov, A.Berkeliev, Radiation effects in AlGaAs / GaAs hetero photo converters at joint radiation and load affects, îHeliotekhnicaî, 1990, n.6, p.47-49.
17. V.M.Andreev, T.M.Golovner, Photoelectric characteristics of high efficient AlGaAs / GaAs solar converters, Fiz. Tekh.Polup., 1978, v.7., n.12., p.2289-2296.
18. V.I.Polyakov, P.I.Perov, ìPhotosensitivity spectra of AlGaAs-GaAs- GaAs heterostructure, Fiz. Tekh. Polup , 1986.v.20,n.9, p.1605 -1609.
19. Zh.I.Alferov, V.M.Andreev, Photoelectric characteristics of AlGaAs - GaAs heterostructure, Fiz. Tekh. Polup , 1978.v.12,2, p.285-292.
20. Zh.I.Alferov, V.M.Andreev, Photoelements based on AlGaAs heterostructures with transition layer, Pisma Zhurn. Tekhn. Fiz., 1978, v.4, n.6., p.305-307.
21. V.M.Andreev, B.V.Egorov, Heterophotoelements with low reverse saturation current, Fiz. Tekh. Polup , 1985. v.19, n.2,p.276-281.
22. Solar energy conversion, Ed. B.O.Seraphin, Springer-Verlag, Berlin, Heidelberg, N-Y. 1979.
23. A.Iskanderov, Kh.Kh. Bustanov, Photosensitive structures and solar elements based on GaAs, Tashkent, ìFANî, 1986,p.144-148.
24. R.W.Boer, J.Piprek ìInverse Delta-Doping for Improvement of Solar Cellsî, Proceedings of the 12 th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam,1994.
25. Y.Qiang, E.Look ìPhotoreflectance Study of GaAs and GaAs/AlGaAs Single Quantum Wells Grown on (001) Si Substrates, Solar Energy Materials and Solar Cells, 1994,v.32, pp.405-411.
https://doi.org/10.1016/0927-0248(94)90103-1
26. F.W.Ragay, J.H.Wolter, ìExperimental analysis of the efficiency of MQW solar cellsî Proceedings of the 12th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, 1994.
27. J.J.Barnes, T.Ali ìGallium Arsenide/ Indium Gallium Arsenide Multi Quantum Well Solar Cells, Proceedings of the 12th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam,1994
28. F.A.Akhmetov, Three cascade photoconverter based on GaAs - AlGaAs heterostructures, ìHeliotekhnicî, 1994, n.2,p.15-17.
29. M.A.Abdukadyrov, Cascade solar elements with two side sensitivity based on GaAs - AlGaAs double heterostructures and silicon, ìHeliotekhnicî, 1991, n.2, p.38-39.
30. A.M.Alakhverdiev, V.M.Andreev, Cascade Si-AlGaAs solar photoelements, Fiz. Tekh.Polupr., 1984, v.18, n.1, p.121-124.
31. M.F.Lamorte, D.Abbott, ìAnalysis of AlGaAs-GaInAs cascade solar cell under AM0-AM5 spectraî, Solid State Electronics, 1979, v.22, pp.467-473.
https://doi.org/10.1016/0038-1101(79)90151-5
32. Zh.I.Alferov, V.M.Andreev, Investigation of cascade solar cells in Al-Ga-As systems, Fiz. Tekh. Polup., v.16., n.6, p.982-986.
33. A.M.Alakhverdiev, Yu.M.Zadiranov, Joint influence wide and narrow band photoelements at cascade n-GaAs-p-AlGaAs-n-AlGaAs element work, Fiz. Tekh. Polupr., 1983,v.17., n.3., p.446-448.
34. A.Taylor, B.Beamount, and J.C,Guillaume,îImproved Efficiency in Ga0,47 In0,53As Tunnel Diodes for the Monolithic Tandem InP/ Ga0,47 In0,53As Grown by OMVPEî Proc. of the 12th EC Photovoltaic Solar Energy Conference, Amsterdam, 1994
35. A.C.Varonides, New Heteroepitaxial InP/InGaAs novel n(superlattice) - i - p(superlattice) Solar Cell for Space Ap-plications. Proc. of the 12 th EC Photovoltaic Solar Energy Conference, Amsterdam, 1994.
36. A.van Geelen, R.A.J.Thomeer, AlGaInP windows for p on n Ga0,5In0,5P solar cells, Proc. of the 12th EC Photovoltaic Solar Energy Conference, Amsterdam, 1994.
37. V.M.Andreev, L.B.Karlina ìNarrow gap InGaAs/InP solar cells illuminated through transparent InP substrateî Proc. of the 12th EC Photovoltaic Solar Energy Conference, Amsterdam, 1994.
38. Sulima, O.V. 1; Bett, A.W.; Dimroth, F.; Keser, S.; Stollwerck,G.; Wettling, W., III/V-materials for tandem concentrator solar cell applicationì, Proc. International Symposium on Compound Semiconductors ISCS-23, St. Petersburg, Russia, 1996, p. 23.-27.9.
39. Wettling, W.; Mertens, R.P.1; Sinke; W.C.2; Schock, H.W.3îPhotovoltaic cells - an overviewì, Proc. EuroSun 96,Freiburg, 1996, 16.9.-19.9.
40. Granqvist, C.G. 1; Wittwer, V. îMaterials for solar energy conversion: an overviewì, Proc. of EuroSun ¥96, Freiburg, 16.9.-19.9.1996.
41. Bett, A.W.; Dimroth, F.; Keser, S.; Stollwerck, G.; Sulima, O.V.; 36.
42. Wettling, W. îA concept for 30% efficiency: Tandem-Concentrator Solar Cellsì, Proceedings EuroSun ¥96, Freiburg,1996, 16.9.-19.9.
43. Yang, M.-J., Yamaguchi, M., Takamoto, T., Ikeda, E., Kurita, H., Ohmori, M. Photoluminescence analysis of InGaP top cells for high-efficiency multi-junction solar cells, 1997, v.45,p. 331-339.
https://doi.org/10.1016/S0927-0248(96)00079-7
44. Shigeru KURODA and Masahiko TAKIKAWA Electron devices using InGaP/GaAs heterojunction, OYO BUTURI, 1996, v.65, No.2, pp.132-137.
45. R. Platz, J. Meier, D. Fischer, S. Dubail, A. Shah, ́The Problem of the Top Cell for the Micromorph Tandemª, in Proceedings of the MRS Symp., SanFrancisco, April 1997.
https://doi.org/10.1557/PROC-467-699
46. T.V.Torchinskaya, Current status of space and terrestrial solar energetics, Int. J, Opto-Electronics , 1998, v.6(2), pp.121-130, (Review).
47. Fischer, H. Keppner, U. Kroll, P. Torres, J. Meier, R. Platz, S.ªRecent Progress of the ́Micromorphª TANDEM Solar Cellsª, in Proc. of the 14th EC Photovoltaic Solar Energy Conference, Barcelona, July 1997.
48. A.Yamamoto, M.Tsujino, M.Ohkubo, A.Hashimoto, ìMOCVD growth of InN for InN/Si tandem solar cells, Solar Energy Materials and Solar Cells, 1994, v.35, pp.53-57.
https://doi.org/10.1016/0927-0248(94)90122-8
49. J.R.Bates, P.H.Fang îResults of solar cell performance on lunar base derived from Apollo missionsî Solar Energy Materials and Solar Cell, 1992, v.26, pp.79-84
https://doi.org/10.1016/0927-0248(92)90127-B
50. M.Yamaguchi, T.Okuda, S.J.Taylor, T.Takamoto, Superior radiation-resistant properties of InGaP/GaAs tandem solar cells, Appl.Phys.Lett, v.79, 1997, p.1566-1568.
https://doi.org/10.1063/1.118618
51. J.M.Olson, S.R.Kurtz, A.E.Kibbler, P.Faine, A 27,3% efficient Ga0,5In0,5P / GaAs tandem solar cell, Appl.Phys.Lett.,v.56(7), 1990, pp.623-625.
https://doi.org/10.1063/1.102717
52. K.A.Bertness, S. R. Kurtz, D.J.Friedman, A.E.Kibbler, C.Kramer, J.M.Olson, 29.5% efficient GaInP / GaAs tandem solar cells, Appl.Phys.Lett., v.65(8), 1994, pp.989-991.
https://doi.org/10.1063/1.112171
53. M.Yamaguchi, T.Okuda, S.J.Taylor, Minority-carrier injection-enhanced annealing of radiation damage in InGaP solar cells, Appl.Phys.Lett, v.70, 1997, pp.2180-2182.
https://doi.org/10.1063/1.119034
54. T.Takamoto, E.Ikeda, H.Kurita, Over 30% efficient InGaP/GaAs tandem solar cells, Appl.Phys.Lett., v.70, 1997, pp.381-383.
https://doi.org/10.1063/1.118419
55. R.J.Walters, H.L.Cotal, S.R.Messenger, E.A.Burke, S.J.Woitczuk, H.B.Serreze, P.R.Sharps, M.L.Timmons, P.Iles, J.C.M.Yeh, îRadiation response of InP&Si and InGaP&GaAs space solar cellsî, Solar Energy Materials&Solar Cells, v.50(1998), pp.305-313.
https://doi.org/10.1016/S0927-0248(97)00161-X
56. T.Takamoto, M.Yamaguchi, S.J.Taylor, Ming-Ju Yang, E.Ikeda, H.Kurita, Radiation resistance of high-efficiency InGaP/GaAs tandem solar cells, Solar Energy Materials & Solar Cells v.58, 1999, pp.265-276.
https://doi.org/10.1016/S0927-0248(99)00003-3
57. R.A.Kumar, M.S.Suresh, J.Nagaraju, Measurement and comparison of AC parameters of silicon (BSR and BSFR) and gallium arsenide (GaAs/Ge) solar cells used in space applications, Solar Energy Materials & Solar Cells, v.60, 2000,pp.155-166.
https://doi.org/10.1016/S0927-0248(99)00080-X
58. N.H.Karam, R.R.King, M.Haddad, J.H.Ermer, H.Yoon, H.L.Cotal, R.Sudharsanan, J.W.Eldredge, K.Edmondson, D.E.Joslin, D.D.Krut, Recent development in high-efficiency Ga0.5In0.5P / GaAs / Ge dual- and triple-junction solar cells: steps to next-generation PV cells, Solar Energy Materials & Solar Cells, v.66, 2001, pp.453-466.
https://doi.org/10.1016/S0927-0248(00)00207-5