Semiconductor Physics, Quantum Electronics and Optoelectronics, 7 (1) P. 022-025 (2004).


References

1. C.I. Pakes, et.al., Technology computer-aided design modeling of single atom doping for fabrication of buried nanostructured // Nanotechnology, 14, p. 157 (2003).
https://doi.org/10.1088/0957-4484/14/2/311
2. J. W. Judy, Microelectromechanical systems (MEMS): fabrication, design, and applications // Smart Mater. Struct.,10, p. 1115 (2001).
https://doi.org/10.1088/0964-1726/10/6/301
3. S.T. Dunham, Alp H. Gencer, S. Chakravarthi // Modeling of dopant diffusion in silicon // IEICE Trans. Electron, E82C,p. 800 (1999).
4. D.J. Fisher, Diffusion in Silicon: 10 years of Research // Scitec Publications Ltd., p. 159 (1998).
5. M. Yoshidal, E. Aria, Impurity diffusion in silicon based on the pair diffusion model and decrease in quasi-vacancy formation energy. Part one: Phosphorus // J. Appl. Phys., 34, p.5891 (1995).
https://doi.org/10.1143/JJAP.34.5891
6. E. Antonicik, The influence of the solubility limit on diffusion phosphorus and arsenic into silicon // Appl. Phys. A, 58, p. 117(1994).
https://doi.org/10.1007/BF00332167
7. D. Mathiot, S. Martin, Modeling of dopant diffusion in silicon: an effective diffusivity approach including point defect coupling // J. Appl. Phys., 70, p. 3071 (1991).
https://doi.org/10.1063/1.349312
8. R.B. Fair, J.C.C. Tsai, A quantitative model for the diffusion in silicon and the emitter dip effect // J. Electroch. Soc., 124,p. 1107 (1977).
https://doi.org/10.1149/1.2133492
9. S.M. Hu, P. Fahey, R.W. Dutton, On models of phosphorus diffusion in silicon // J. Appl. Phys., 54, p. 6912 (1983).
https://doi.org/10.1063/1.331998
10. B.J. Mulvaney, W.B. Richardson, The effect of concentration-dependent defect recombination reaction on phosphorus diffusion in silicon // J. Appl. Phys., 67, p. 3197 (1990).
https://doi.org/10.1063/1.345405
11. M. Budil, et.al., A new model of anomalous phosphorus diffusion in silicon // Materials Science Forum, 38-41, p. 719(1989).
https://doi.org/10.4028/www.scientific.net/MSF.38-41.719
12. B.Buccus, et.al., A study of nonequilibrium diffusion modeling applications tom rapid thermal annealing and advanced bi-polar technology // IEEE, Trans., Electron Dev., ED-39, p. 648(1992).
https://doi.org/10.1109/16.123491
13. S.T. Dunhan, A quantitative model for coupled diffusion of phosphorus and point defects in silicon // J. Electroch. Soc.,139, p. 2628 (1992).
https://doi.org/10.1149/1.2221276
14. F. Wittel, S.T. Dunham, Diffusion of phosphorus in Arsenic and Boron Doped Silicon // Appl. Phys. Lett., 66, p. 1415(1994).
https://doi.org/10.1063/1.113219
15. K. Ghaderi, G. Hobler, Simulation of phosphorus diffusion in silicon using a pair diffusion model with a reduced number of parameters // J. Electroch. Soc., 142, p. 1654 (1995).
https://doi.org/10.1149/1.2048633
16. R.B. Fair, Analysis of phosphorus diffusion layers in silicon // J. Electroch. Soc., 125, p. 323 (1978).
https://doi.org/10.1149/1.2131438
17. S. Middleman, Arthur K. Hochb, (Eds), Process engineering analysis in semiconductor device fabrication.McGraw-Hill,1993, p. 350.
18. J.C.C. Tsai, Shallow diffusion of phosphorus in silicon // IEEE, Proceeding, 57, p. 1499 (1969).
https://doi.org/10.1109/PROC.1969.7325
19. W.E. Beadle, J.C.C. Tsai, R.D. Plummer(Eds), Quick reference manual for silicon integrated circuit technology. John-Wiley & Sons, 1985.
20. J.D. Plummer, Peter B. Griffin, Michael D. Deal, Silicon VLSI technology fundamental, practice, and modeling. Prentice-Hall Inc., 2000.