1. W. Nolting, S. Rex and S. Mathi Jaya, Magnetism and electronic structure of a local moment ferromagnet // J. Phys. C,9, pp. 1301-1330 (1997). https://doi.org/10.1088/0953-8984/9/6/015 | | 2. D. M. Edwards, A. C. M. Green and K. Kubo, Electronic structure and resistivity of the double exchange model // J.Phys. C, 11, pp. 2791-2808 (1999). https://doi.org/10.1088/0953-8984/11/13/014 | | 3. M. Takahashi and K. Kubo, Coherent-potential approach to magnetic and chemical disorder in diluted magnetic semiconductors // Phys. Rev. B, 60, pp.15858-15864 (1999). https://doi.org/10.1103/PhysRevB.60.15858 | | 4. M.P. Kennet, M. Berciu and R.N. Bhatt, Monte Carlo simulations of an impurity-band model for III-V diluted magnetic semiconductors // Phys. Rev. B, 66, pp. 045207/1-16(2002). https://doi.org/10.1103/PhysRevB.66.045207 | | 5. M. P. Kennett, M. Berciu, and R. N. Bhatt, Two-component approach for thermodynamic properties in diluted magnetic semiconductors // Phys. Rev. B, 65, pp.115308/1-11 (2002). https://doi.org/10.1103/PhysRevB.65.115308 | | 6. V.A. Ivanov, P.M. Krstajic, F.M. Peeters, V.N. Fleurov, and K.A. Kikoin, On the nature of ferromagnetism in diluted magnetic semiconductors: GaAs:Mn, GaP:Mn // Journal of Magnetism & Magnetic Materials, 258-259, pp. 237-240 (2003). https://doi.org/10.1016/S0304-8853(02)01023-5 | | 7. V.A. Ivanov, P. M. Krstajic, F. M. Peeters, V. N. Fleurov, and K. A. Kikoin, On the ferromagnetic exchange in Mn-doped III-V semiconductors // Physica B, 329-333, pp.1282-1283 (2003). https://doi.org/10.1016/S0921-4526(02)02240-8 | | 8. P.M. Krstajic, F.M. Peeters, V.A. Ivanov, V. N. Fleurov and K. A. Kikoin, Double exchange mechanisms for Mn doped III-V ferromagnetic semiconductors // Phys. Rev. B, Submitted (2003). https://doi.org/10.1103/PhysRevB.70.195215 | | 9. K.A. Kikoin and V.N. Fleurov, Transition Metal Impurities in Semiconductors (World Scientific Publishing, Singapore) (1994). | | 10. R.N. Aiyer, R.J. Elliott, J.A. Krumhansl, and P.L. Leath, Pair Effects and Self-Consistent Corrections in Disordered Alloys // Phys. Rev. B, 181, pp. 1006-1014 (1969). https://doi.org/10.1103/PhysRev.181.1006 | | 11. F. Yonezawa, An exact form of first-order self-energy in random lattice problems // Prog. Theor. Phys., 39, pp. 1076-1078 (1968). https://doi.org/10.1143/PTP.39.1076 | | 12. F. Yonezawa and T. Matsubara, Note on electronic state of random lattice II // Prog. Theor. Phys., 35, pp. 357-379 (1966). https://doi.org/10.1143/PTP.35.357 | | 13. F. Yonezawa, A systematic approach to the problems of random lattices I // Prog. Theor. Phys., 40, pp. 734-757 (1968). https://doi.org/10.1143/PTP.40.734 | | 14. W. Metzner; P. Schmit and D. Vollhardt, Hole dynamics a spin background: A sum-rule-conserving theory with exactlimits // Phys. Rev. B, 45, pp. 2237-2251 (1992). https://doi.org/10.1103/PhysRevB.45.2237 | | 15. Yu. A. Izyumov, The Hubbard model in the regime of strong electronic correlation // Physics-Uspekhi, 38, pp. 385-410(1995). https://doi.org/10.1070/PU1995v038n04ABEH000081 | | 16. Yu. A. Izyumov, The tГ±Jmodel for strongly correlated electrons and high-Tc superconductors // Physics-Uspekhi, 40,pp. 445-477 (1997). https://doi.org/10.1070/PU1997v040n05ABEH000234 | | 17. I.V. Stasyuk, Approximate analytical dynamical mean-field approach to strongly correlated electron systems// Condensed Matter Physics 3, pp. 437-455 (2000). https://doi.org/10.5488/CMP.3.2.437 | | 18. G. Baym and L.P. Kadanoff, Conservation laws and correlation functions // Phys.Rev. 124, pp. 287-299 (1961). https://doi.org/10.1103/PhysRev.124.287 | | 19. E.L. Nagayev, Electrons, indirect exchange and localized magnons in magnetoactive semiconductors // ZhETP, 56,pp. 1013-1028 (1969). | | 20. M.I. Vladimir and V.A. Moskalenko, Diagram technique for the Hubbard model // Theor. Math. Phys., 82, pp. 428-437(1990). https://doi.org/10.1007/BF01029224 | | 21. V.A. Moskalenko, Perturbation theory for nonperiodic Anderson model // Theor. Math. Phys., 110, pp. 308-322(1997) https://doi.org/10.1007/BF02630450 | | 22. A.Georges, G.Kotliar, W.Krauth, and M.Rosenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions // Rev. Mod. Phys.,68, pp. 13-125 (1996). https://doi.org/10.1103/RevModPhys.68.13 | |
|