Semiconductor Physics, Quantum Electronics and Optoelectronics, 7 (1) P. 043-051 (2004).


References

1. W. Nolting, S. Rex and S. Mathi Jaya, Magnetism and electronic structure of a local moment ferromagnet // J. Phys. C,9, pp. 1301-1330 (1997).
https://doi.org/10.1088/0953-8984/9/6/015
2. D. M. Edwards, A. C. M. Green and K. Kubo, Electronic structure and resistivity of the double exchange model // J.Phys. C, 11, pp. 2791-2808 (1999).
https://doi.org/10.1088/0953-8984/11/13/014
3. M. Takahashi and K. Kubo, Coherent-potential approach to magnetic and chemical disorder in diluted magnetic semiconductors // Phys. Rev. B, 60, pp.15858-15864 (1999).
https://doi.org/10.1103/PhysRevB.60.15858
4. M.P. Kennet, M. Berciu and R.N. Bhatt, Monte Carlo simulations of an impurity-band model for III-V diluted magnetic semiconductors // Phys. Rev. B, 66, pp. 045207/1-16(2002).
https://doi.org/10.1103/PhysRevB.66.045207
5. M. P. Kennett, M. Berciu, and R. N. Bhatt, Two-component approach for thermodynamic properties in diluted magnetic semiconductors // Phys. Rev. B, 65, pp.115308/1-11 (2002).
https://doi.org/10.1103/PhysRevB.65.115308
6. V.A. Ivanov, P.M. Krstajic, F.M. Peeters, V.N. Fleurov, and K.A. Kikoin, On the nature of ferromagnetism in diluted magnetic semiconductors: GaAs:Mn, GaP:Mn // Journal of Magnetism & Magnetic Materials, 258-259, pp. 237-240 (2003).
https://doi.org/10.1016/S0304-8853(02)01023-5
7. V.A. Ivanov, P. M. Krstajic, F. M. Peeters, V. N. Fleurov, and K. A. Kikoin, On the ferromagnetic exchange in Mn-doped III-V semiconductors // Physica B, 329-333, pp.1282-1283 (2003).
https://doi.org/10.1016/S0921-4526(02)02240-8
8. P.M. Krstajic, F.M. Peeters, V.A. Ivanov, V. N. Fleurov and K. A. Kikoin, Double exchange mechanisms for Mn doped III-V ferromagnetic semiconductors // Phys. Rev. B, Submitted (2003).
https://doi.org/10.1103/PhysRevB.70.195215
9. K.A. Kikoin and V.N. Fleurov, Transition Metal Impurities in Semiconductors (World Scientific Publishing, Singapore) (1994).
10. R.N. Aiyer, R.J. Elliott, J.A. Krumhansl, and P.L. Leath, Pair Effects and Self-Consistent Corrections in Disordered Alloys // Phys. Rev. B, 181, pp. 1006-1014 (1969).
https://doi.org/10.1103/PhysRev.181.1006
11. F. Yonezawa, An exact form of first-order self-energy in random lattice problems // Prog. Theor. Phys., 39, pp. 1076-1078 (1968).
https://doi.org/10.1143/PTP.39.1076
12. F. Yonezawa and T. Matsubara, Note on electronic state of random lattice II // Prog. Theor. Phys., 35, pp. 357-379 (1966).
https://doi.org/10.1143/PTP.35.357
13. F. Yonezawa, A systematic approach to the problems of random lattices I // Prog. Theor. Phys., 40, pp. 734-757 (1968).
https://doi.org/10.1143/PTP.40.734
14. W. Metzner; P. Schmit and D. Vollhardt, Hole dynamics a spin background: A sum-rule-conserving theory with exactlimits // Phys. Rev. B, 45, pp. 2237-2251 (1992).
https://doi.org/10.1103/PhysRevB.45.2237
15. Yu. A. Izyumov, The Hubbard model in the regime of strong electronic correlation // Physics-Uspekhi, 38, pp. 385-410(1995).
https://doi.org/10.1070/PU1995v038n04ABEH000081
16. Yu. A. Izyumov, The tñJmodel for strongly correlated electrons and high-Tc superconductors // Physics-Uspekhi, 40,pp. 445-477 (1997).
https://doi.org/10.1070/PU1997v040n05ABEH000234
17. I.V. Stasyuk, Approximate analytical dynamical mean-field approach to strongly correlated electron systems// Condensed Matter Physics 3, pp. 437-455 (2000).
https://doi.org/10.5488/CMP.3.2.437
18. G. Baym and L.P. Kadanoff, Conservation laws and correlation functions // Phys.Rev. 124, pp. 287-299 (1961).
https://doi.org/10.1103/PhysRev.124.287
19. E.L. Nagayev, Electrons, indirect exchange and localized magnons in magnetoactive semiconductors // ZhETP, 56,pp. 1013-1028 (1969).
20. M.I. Vladimir and V.A. Moskalenko, Diagram technique for the Hubbard model // Theor. Math. Phys., 82, pp. 428-437(1990).
https://doi.org/10.1007/BF01029224
21. V.A. Moskalenko, Perturbation theory for nonperiodic Anderson model // Theor. Math. Phys., 110, pp. 308-322(1997)
https://doi.org/10.1007/BF02630450
22. A.Georges, G.Kotliar, W.Krauth, and M.Rosenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions // Rev. Mod. Phys.,68, pp. 13-125 (1996).
https://doi.org/10.1103/RevModPhys.68.13