Semiconductor Physics, Quantum Electronics and Optoelectronics, 8 (1) P. 036-045 (2005).
DOI: https://doi.org/10.15407/spqeo8.01.036


References

1. K. Mukai, Y. Nakata, K. Otsubo et al., High characteristic temperature of near - 1.3-μm InGaAs/GaAs quantum-dot lasers at room temperature // Appl. Phys. Lett. 76 (23), p. 3349- 3351 (2000)
https://doi.org/10.1063/1.126644
W. Huang, F. Jain, Integrated InGaAs-InP quantum wire laser-modulators for 1.55-μm applications // Opt. Eng. 43 (3), p. 667- 672 (2004).
https://doi.org/10.1117/1.1645845
2. M.Ya. Valakh, V.V. Strelchuk, A.F. Kolomys et al., Resonant Raman scattering and atomic force microscopy of InGaAs/GaAs multilayer nanostructures with quantum dots // Semiconductors 39(1), p. 127-131 (2005).
https://doi.org/10.1134/1.1852661
3. V.V. Strelchuk, M.Ya. Valakh, A.F. Kolomys, P.M. Lytvyn et al., Vertical and lateral ordering the quantum dots and quantum wires in InхGa1-хAs/GaAs(100) multilayer structures // Abstracts of 2nd Ukrainian scientific conference for physics of semiconductors, 20-24 September, 2004, Vol. 2, p. 220-221.
4. W. Ma, R. Nötzel, A. Trampert et al., Selforganized quantum wires formed by elongated dislocation-free islands in (In,Ga)As/GaAs(100) // Appl. Phys. Lett. 78 (9), p. 1297-1299 (2001).
https://doi.org/10.1063/1.1352047
5. R. Leon, Y. Kim, C. Jagadish, M. Gal, J. Zou, D.J.H. Cockayne, Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots // Appl. Phys. Lett. 69(13), p.1888-1890 (1996).
https://doi.org/10.1063/1.117467
6. S.J. Xu, X.C. Wang, S.J. Chua, C.H. Wang et al., Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots // Appl. Phys. Lett. 72 (25), p. 3335- 3337(1998)
https://doi.org/10.1063/1.121595
S.J. Xu, H. Wang, Q. Li et al., X-ray diffraction and optical characterization of interdiffusion in self-assembled InAs/GaAs quantum-dot superlattices // Ibid. 77(14), p. 2130- 2132 (2000).
https://doi.org/10.1063/1.1314298
7. J. Tersoff, C. Teichert, M.G. Lagally, Selforganization in growth of quantum dot superlattices // Phys. Rev. Lett. 76 (10), p. 1675- 1678 (1996).
https://doi.org/10.1103/PhysRevLett.76.1675
8. N.N. Faleev, Yu.G. Musikhin, A.A. Suvorov, A.Yu. Yegorov, A.Ye. Zhukov, A.R. Kovsh, V.M. Ustinov, M. Tabuchi , Y. Takeda, X-ray and synchrotron diffraction and transmission electron microscopy studies of anisotropy of spatial distribution of In(Ga)As quantum dots in In(Ga)As/GaAs multilayer heterostructures // Fiz. Tekhnika Poluprov. 35(8), p. 969-978 (2001) (in Russian).
https://doi.org/10.1134/1.1393030
9. L. Tapfer, P. Sciacovelli, L. De Caro, Double- and triple-crystal X-ray diffraction analysis of semiconductor quantum wires // J. Phys. D: Appl. Phys. 28, p. A179-A173(1995).
https://doi.org/10.1088/0022-3727/28/4A/035
10. A. Ponchet, A. Rocher, A. Ougazzaden, A. Mircea, Self-induced laterally modulated GaInP/InAsP structure grown by metal-organic vapor-phase epitaxy // J. Appl. Phys. 75 (12), p. 7881-7883 (1994).
https://doi.org/10.1063/1.356573
11. R.L. Headrick, J.-M. Baribeau, Y.E. Strausser, Anisotropic roughness in Ge/Si superlattices // Appl. Phys. Lett. 66 (1), p. 96-98 (1995).
https://doi.org/10.1063/1.114158
12. Z.M. Wang, K. Holms, Yu.I. Mazur, G.J. Salamo, Fabrication of (In,Ga)/As quantum-dot chains on GaAs(100) // Ibid. 84 (11), p. 1931-1933 (2004).
https://doi.org/10.1063/1.1669064
13. A. Krost, F. Heinrichsdor, D. Bimberg, A. Darhuber, G. Bauer, High-resolution X-ray diffraction of self-organized InGaAs/GaAs quantum dot structures // Ibid. 68 (6), p. 785-787 (1996).
https://doi.org/10.1063/1.116532
14. D. Pal, E. Towe, S. Chen, Structural characterization of InAs/GaAs quantum-dot nanostructures // Ibid. 78 (26), p. 4133-4135 (2001).
https://doi.org/10.1063/1.1382855
15. Yu.I. Mazur, W.Q. Ma, X. Wang et al., InGaAs/GaAs three-dimensionally-ordered array of quantum dots // Ibid. 83 (5), p. 987-989 (2003).
https://doi.org/10.1063/1.1596712
16. V. Holy, J. Kubena, E. Abramof, A. Presek, E. Koppensteiner // X-ray diffractometry of small defects in layered systems // J. Phys. D: Appl. Phys. 26 (4A), p. A146-A150 (1993).
https://doi.org/10.1088/0022-3727/26/4A/031
17. A.K. Bowen, B.K. Tanner, High resolution X-ray diffractometry and topography. St.-Petersburg, Nauka (2002).
18. W. Chen, B. Shin, R.S. Goldman, A. Stiff, P.K. Bhattacharya, Mechanisms of lateral ordering of InAs/GaAs quantum dot superlattices // J. Vac. Sci. Technol. B 21 (4), p. 1920-1923 (2003).
https://doi.org/10.1116/1.1588645
19. D. Grigoriev, M. Schmidbauer, P. Schaefer et al., Three-dimensional self-ordering in an InGaAs/GaAs multilayer quantum dot structure investigated by X-ray diffuse scattering // J. Phys. D: Appl. Phys. (2004) (in press).
https://doi.org/10.1088/0022-3727/38/10A/029
20. S. Krishna, S. Raghavan, A.L. Gray, A. Stintz, K.J. Malloy, Characterization of rapid-thermalannealed InAs/In0.15Ga0.85As dots-in-well heterostructure using double crystal X-ray diffraction and photoluminescence // Appl. Phys. Lett. 80 (21), p. 3898-3900 (2002).
https://doi.org/10.1063/1.1482421
21. I.K. Schuller, M. Grimsditch, F. Chambers et al. // Phys. Rev. Lett. 65 (10), p. 1235-1238 (1990).
https://doi.org/10.1103/PhysRevLett.65.1235
22. A. Krost, G. Bauer, J. Woitok, High resolution X-ray diffraction in: optical characterization of epitaxial semiconductor layers, Eds G. Bauer, W. Richter; Springer, Berlin (1996) p. 347.
https://doi.org/10.1007/978-3-642-79678-4_6
23. A. Krost, F. Heinrichsdorff, D. Bimberg, J. Bläsing, A. Darhuber, G. Bauer, X-ray analysis of self-organized InAs/InGaAs quantum dot structures // Cryst. Res. Technol. 34(1) p.89-102 (1999).
https://doi.org/10.1002/(SICI)1521-4079(199901)34:1<89::AID-CRAT89>3.3.CO;2-L
24. N. Faleev, K. Pavlov, M. Tabuchi, and Y. Takeda, Influence of long-range lateral ordering in structures with quantum dots on the special distribution of diffracted X-ray radiation // Jpn J. Appl. Phys. 38, Part 1(2A), p.818-821 (1999).
https://doi.org/10.1143/JJAP.38.818
25. A. Sanz-Hervas, M. Aguilar, J.L. Sanchez-Rojas et al., Observation of non-trigonal lattice distortion in pseudomorphic InGaAs/GaAs superlattices grown on misoriented (111)B GaAs // J. Appl. Phys. 82(7), p. 3297-3305 (1997).
https://doi.org/10.1063/1.365637
26. L. De Caro, P. Sciacovelli, and L. Tapfer, Doublecrystal X-ray diffraction from periodically corrugated crystalline semiconductor surfaces // Appl. Phys. Lett. 64, (1), p.34-36 (1994).
https://doi.org/10.1063/1.110912
27. W. Ma, R. Nötzel, A. Trampert et al., Selforganized quantum wires formed by elongated dislocation-free islands in (In,Ga)As/GaAs(100) // Appl. Phys. Lett. 78 (9), p.1297-1299 (2001)
https://doi.org/10.1063/1.1352047
T. Mano, R. Nötzel, G.J. Hamhuis et al., Effect of annealing on formation of self-assembled (In,Ga)As quantum wires on GaAs (100) by molecular beam epitaxy // J. Appl. Phys. 92 (7), p. 4043-4046 (2002).
https://doi.org/10.1063/1.1506191
28. Qun Shen, Stefan W. Kycia, E.S. Tentarelli, W.J. Schaff, and L.F. Eastman, X-ray-diffraction study of size-dependent strain in quantum-wire structures. // Phys. Rev. B 54 (23), p. 16381-16384 (1996).
https://doi.org/10.1103/PhysRevB.54.16381