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Abstract. In the paper, a simple theory of quantum inteference in a loop structure caused 
by spin coherent transport and the Larmor precession of the electron spin is presented. A 
“spin ballistic” regime is supposed to occur, when the phase relaxation length for the spin 
part of the wavefunction ( ))(sLϕ  is much greater than the phase relaxation length for the 

“orbital part” ( ))(eLϕ . In the presence of an additional magnetic field, the spin part of the 
electron wavefunction acquires a phase shift due to additional spin precession around that 
field. If the structure length L is chosen to be )()( es LLL ϕϕ >> , it is possible to “wash out” 
the quantum interference related to the phase coherence of the “orbital part” of the 
wavefunction, retaining at the same time that related to the phase coherence of the spin 
part and, hence, to reveal corresponding conductance oscillations. Different mechanisms 
of spin relaxation, such as Elliot – Yafet, the scattering by the edges and surface the 
structure and the precession ones, as well as their influence on the spin coherent transport 
are considered. The quantum interference in time-dependent magnetic field, quantum 
beats in mesoscopic loop structure, are also discussed. The similarities between this 
effect and Josephson, scalar Aharonov – Bohm and Aharonov – Casher effects, as well as 
their differences are treated and possible application of the effect to the construction of 
the device, complementary to superconducting quantum interference device is analyzed. 
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1. Introduction 
 
The majority of all modern electronic devices are based 
solely upon the transport of electron charge, quantum 
transport including. And yet charge is not the only 
distinguishing feature of the electron, another one is its 
spin. Despite the contemporary focus on semiconductor 
quantum devices, this second principal quantum 
mechanical aspect of the electron, – its spin has largely 
been ignored. However, in recent years a new paradigm 
of electronics based on the spin degree of freedom of the 
electron has began to emerge, so even the name for this 
new branch of the science and technology was coined, 
spintronics. Plainly speaking, spintronics is an attempt to 
substitute the electron charge by its spin in order to use it 
for the variety of practical applications [1]. The single 
biggest boost to the field of spintronics has been the 
discovery of the Giant Magneto-Resistance (GMR) and 
GMR-sandwich structures. GMR was discovered in 
1988 in a superlattice with alternating Fe and Cr layers 
[2] and this effect has become the basis for a majority of 
spintronic devices. Up to now most of attention was paid 
to manipulation of electron spins in micro- and 

nanostructures by means, for instance, spin injection [3], 
while another possible non-classical devices based on 
quantum inteference of spins attracted less attention. 

One of the main ideas which underpins various 
possible applications of “spin transport”, including 
information storage and computation, is that the spins of 
electrons in semiconductors may have very long 
quantum coherence times [4], or in other words, 
electrons can travel a long way without flipping their 
spins. But this also gives the possibility to observe 
quantum effects which involve the interference of 
electron waves. In the classical picture of transport 
phenomena, the total probability for a particle to transfer 
from one point to another is the sum of the probabilities 
for such transfer over all possible trajectories. In the 
quantum description, this result corresponds to 
neglecting the interference of scattered electron waves 
propagating along different paths. The destruction of 
quantum coherence is controlled by the phase relaxation 
time or phase relaxation length. Since for the electron 
spin this length may be very long, it is naturally to 
expect that the spin interference can reveal itself in the 
conductance oscillations similar to those caused by the 
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Aharonov – Bohm (AB) effect. Most of the researchers 
who dealt with the AB effect in the solid state [5] 
considered mainly the Hamiltonian 

),(2/))/((^ *2 zyUmceH +−= Ap , where ),( zyU  is 
the energy corresponding to the transverse motion, and 
almost nobody takes into account the spin-part B^

Bσμ   

of the Hamiltonian ( Bμ is the Bohr magneton, σ̂  is the 
electron spin operator, B is the magnetic field). 
However, if the quantum interference is concerned, the 
quantity of main importance is the coherence length. If 
one considers the total Hamiltonian that includes the 
Pauli term, one can write down the electron 
wavefunction in a factorized form as the tensor product: 

)()(),( srsr χ⊗ϕ=Ψ  and consider the coherence of 
each part separately. As a result, it is possible to 
introduce two phase relaxation lengths, the first one for 
the „orbital part” of the electron wavefunction, )(eLϕ , and 

the second one, )(sLϕ  for the spin part of the 

wavefunction. It turns out [6 – 8] that )()( es LL ϕϕ >>  which 
is in total agreement with the experiment [4]. The 
physics which is behind that is the following. An 
electron during its transfer along some path in the solid 
(semiconductor, for definiteness) interacts all the time 
with the environment. As a rule, rigid scatters such as 
impurities and other defects of crystalline structure do 
not contribute to the phase relaxation; only dynamical 
scatters like phonons do. On the other hand, the electron 
scattering by phonons is mainly inelastic, while impurity 
scattering is mainly elastic, so we can say that only 
inelastic scattering contributes to the phase relaxation. 
But what does it mean inelastic scattering in case of 
spin? It means spin flips caused by spin-orbit interaction 
accompanied by phonon interaction, since there must be 
an agent which adds or subtracts the Zeeman energy to 
the electron spin. This kind of interaction is very weak 
and that is why the spin flips are rare events and the 
phase relaxation length for the spin part of the electron 
wavefunction is very long. But now, if the structure 
length L is chosen to be )()( es LLL ϕϕ >> , it is possible to 
“wash out” the quantum interference related to phase 
coherence of the ”orbital part” of the wavefunction 
retaining at the same time the phase coherence of the 
spin part one and hence, to reveal the corresponding 
conductance oscillations of the microstructure. Such 
model was considered in the papers [6, 7], where the 
simple theory of the quantum interference in a loop 
structure due to the Larmor precession of electron spin in 
semiconductor microstructure was presented for the first 
time. The aim of this paper is to summarize our previous 
results, discuss other aspects of the problem, for 
instance, the precession mechanisms of spin relaxation 
which are the characteristic ones for the crystals and 
heterostructures with lack of inversion symmetry, as 

 
Fig. 1. Sketch of a two-channel semiconductor mesoscopic 
structure with an additional magnetic field accross one of the 
channels. On the upper panel t, t′ , r, r′  indicate the 
transmission and reflection matrices at the two junctions 

0≤x , Lx ≥ ; P, P′  stand for the propagation matrices in the 
middle region ( Lx ≤≤0 ); the external magnetic field B0. 

 
well as to discuss the quantum interference of spins 
occurring in the time-dependent magnetic field. 

2. Elliot – Yafet mechanism of spin relaxation 

 
We start with a loop microstructure with two end regions 
x < 0 and x > L and a middle region 0 ≤ x ≤ L consisting of 
two channels (Fig. 1), similar to those considered in [6, 7]. 

Consider an electron entering the domain occupied 
by the magnetic field, say, from the left-end region. The 
electron wavefunction is a coherent superposition of the 
spin-up ( )>↑χ   and spin-down ( )>↓χ   eigenstates, 
which are split in the magnetic field by the Zeeman 
energy Bg Bμ=εΔ , (g is the Lande factor). Coherent 
evolution under the spin Hamiltonian results in 
oscillations between these two eigenstates; classically 
this oscillation corresponds to precession of the spin 
vector at the Larmor frequency hεΔ . In other words, 
we consider the non-relativistic electron motion in the 
magnetic field as the motion of a classical top which 
precesses about the magnetic field. Since the magnetic 
fields are different in the two arms of the structure, the 
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phase shifts acquired by the spin wavefunctions are also 
different. 

Suppose the Hamiltonian of an electron is 
1100 IHIHH ⊗+⊗= , where: 

B⋅μσ−=+−= ^),())/((2/1 1
2*

0 HrUAcepmH . (1) 

Here I0, I1 are the unit operators acting in the state spaces 
of H0 and H1, respectively, m* is the electron effective 
mass, A is the vector potential corresponding to the 
magnetic field B, μB and σ̂  are Bohr magneton and the 
spin operator, respectively. We also assume that U(r) 
describes conduction bands bending due to space charge 
and discontinuities of any band. Since H0 does not 
depend on spin, the wavefunction is the tensor product: 

),(),(),,( tstst χ⊗ϕ=Ψ rr . Ever since for convenience 
we shall refer to ),( trϕ  as the “orbital part” of the total 
wavefunction, keeping in mind that it corresponds to H0 
describing the charge-field interaction, and we shall refer 
to ),( tsχ  as the spin-part of the wavefunction related to 
H1, the spin part of the Hamiltonian (1). 

Introducing the factorized form of the wavefunction 
as the tensor product of orbital and spin parts, one not 
only can, but rather have to introduce simultaneously 
two phase relaxation lengths, the first one for the “orbital 
part” of the electron wavefunction, )(eLϕ , and the second 

one, )(sLϕ  for the spin part. As we already mentioned in 

Sec.1, it turns out [6, 8] that )()( es LL ϕϕ >> , which is in 
total agreement with the experiment [4]. Physics hidden 
behind that is as follows. An electron during its transfer 
along some path in the solid (semiconductor, for 
definiteness) interacts all the time with the environment. 
As a rule, rigid scatterers such as impurities and other 
defects of crystalline structure do not contribute to the 
phase relaxation, since according to general principles, 
quantum coherence of the wavefunction cannot be 
destroyed due to elastic interactions with a static external 
potential. But inelastic interactions may and in general 
do destroy the phase coherence of the wavefunction. Let 
us look at the interaction of an electron with the crystal 
lattice from the electron reference frame. In the electron 
reference frame, it is the ions that constitute the crystal 
lattice are moving. These moving ions produce some 
magnetic field that acts upon electron spin and this is 
spin-orbit interaction mentioned in the Introduction. On 
the other hand, in order a spin-flip may to occur, there 
must be an agent which adds energy to the electron or 
carries it away. This agent is nothing else but phonon. 
So, the spin-flip is caused by spin-orbit interaction 
accompanied by phonon scattering. This kind of 
interaction (this mechanism of spin relaxation is termed 
in the literature as Elliot – Yafet (EY) mechanism) is 
weak, and that is why the spin flips are rare events. 

In order to estimate the spin phase relaxation time 
)(
ph,

s
ϕτ  due to interaction with phonons, consider a simple 

model which actually was considered in [6] and which, 
for the sake of consistency and the readers’ convenience, 
we outline here very briefly. 

Let us take a two-state quantum system (which we 
shall refer to as subsystem A) with excitation energy ε 
interacting with a phonon bath, and identify two states 
with the “spin-up” and “spin-down” states of a spin in an 
external magnetic field. For simplicity, we suppose the 
interaction of the subsystem A with the phonons to be 
resonant; this means that only those modes of the 
phonon bath whose energy is equal to ε interact with the 
two-level subsystem. Other modes are taken into account 
indirectly by choosing all mean values of phonon bath 
parameters to be equal to their statistical average at 
given temperature T. As a result, for the model of 
phonon bath we can take a great number (N >> 1) of 
identical non-interacting subsystems Bn with excitation 
energy ε. 

Then the Hamiltonian of the entire system 
(subsystem A + phonon bath) is 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ε= ∑

=

N

n
nnbbaaH

1

†† , (2) 

where a†, a are the Fermi creation and anihilation 
operators related to the excitations of subsystem A, while 
b†, b are the Bose creation and anihilation operators 
related to the excitations of the n-th subsystem of 
phonon bath. 

Thus, for the subsystems of the equidistant spectra, 
we have 

1†† )1)(exp()(Sp −−βε=ρ= nnnn bbbb , 

TkB1=β , 

where  ρn is the statistical operator for the Bn 
subsystems, kB is the Boltzmann constant, T is the 
temperature, Sp(…) is the trace operator. 

The interaction of two-level systems with phonons 
can be described by the term )(int tH : 

( )( )( )∑
=

τ−θ−−τ−θ=
N

n
nHntnttH

1
int )(1)( , (3) 

where 

⎩
⎨
⎧

≤
>

=θ
0if0
0if1

t
t

, 

)(
††

int abbaH nnn +ε=  

and εint is the interaction energy. 
The physical meaning of (3) is that the subsystem A 

interacts each time during interval τ with those 
subsystem Bn which did not interact with A during 
previous time interval, or, in other words, τ is the 
electron-phonon collision time. 

The kinetic equation for the density matrix 
corresponding to Hamiltonian (1) with the interaction 
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between two subsystem of the form (3), is solved in our 
paper [6], where also the next formula for )(

ph,
s

ϕτ is 
derived: 

)2tanh(2ln)(~ 2
int

2)(
ph, βε⋅τετϕ hs , 

where εint is an interaction energy characterizing an 
interaction between two-level quantum subsystem and 
the phonon bath. 

In the work [6], only the lower boundary for )(
ph,

s
ϕτ  

was established, which nevertheless turned out to be 
much greater than )(e

ϕτ , the phase relaxation time of the 
orbital part of the wavefunction. It is possible to get 
more rigorous theory which could make more precise 
calculations possible (for details see, for instance, [8] 
and the next Section). 

Anyway, if the electron scattering by phonons is 
concerned, we have shown that indeed one can choose 
the structure length to be )()( es LL ϕϕ >> . 
 
3. Precession mechanisms of spin phase relaxation 
 
In the works [7, 8], we considered the edge and surface 
scattering and their influence on the spin phase 
relaxation. We have shown that this kind of scattering 
practically does not contribute to the “phase memory” 
destruction and can be neglected. The reason why the 
spin relaxation due to edge and surface scattering is even 
great much times weaker than due to EY mechanism is 
quite lucid: being the rigid scatters, such as impurities 
and other defects of crystalline structure, the edges and 
the surface of the structure do not contribute to the phase 
relaxation, since according to general principles, 
quantum coherence of the wavefunction cannot be 
destroyed due to elastic interactions with a static external 
potential. 

So far our assertion, )()( es LL ϕϕ >>  was proved to be 
valid for two possible mechanisms of spin phase 
relaxation: EY process and the spin relaxation due to 
surface scattering. However, there are other possible 
causes for the destruction of “phase memory” of the spin 
part of electron wavefunction. These are, so-called 
precession mechanisms of spin-relaxation, for instance, 
D’yakonov – Perel (DP) mechanism [9]. This 
mechanism is characteristic one for the crystals of zinc-
blende structure whose point group has no inversion 
symmetry: in a material with bulk inversion asymmetry 
(BIA) the electron energy bands are spin split for a given 
direction of the wavevector k. There is also another very 
similar mechanism which is characteristic for the 
heterostructures and 2DEG layers, where the spin 
splitting may occur as a result of the structure inversion 
asymmetry (SIA) and which was first pointed out by 
Yn. Bychkov and E. Rashba [10]. 

 
 
Fig. 2. Schematic representation of the precession mechnism of 
spin relaxation:  1 – S 2-sphere; 2 – a point on the S 2-sphere 
corresponds the the initial position of the spin precession axis; 
3 – shaded cirlces correspond to the sequential positions of the 
spin precession axis whose direction changes randomly due to 
collisions. 
 

Let us start with the DP mechanism. As is known, 
the diamond-type lattice consists of two similar face-
centered cubic sublattices mutually penetrating each 
other. The zinc-blende type crystal lattices (AIIIBV-type, 
for example) differ from the diamond-type one in that 
respect, that two sublattices are not identical: the first 
one consists of the A-type atoms, while another 
sublattice is of the B-type atoms. As a result, the point 
group of the zinc-blende structure does not involve the 
inversion and, as a consequence, the periodic part of the 
Bloch function satisfies no longer the condition 

)()( rr kk −=− UU . Hence, a twofold degeneracy is 
lifted, and the electron energy bands are spin-split in 
these materials for a given direction of the wavevector k, 
even if the external magnetic field is not present. As a 
result, another mechanism of spin relaxation proposed 
for the first time in [10] becomes possible. We call this 
mechanism as the “precession” mechanism of spin 
relaxation. 

The spin splitting in k-point is equal [9, 11]: 
3

0 )( knk η=εΔ , 
kkn =0 , 

where )()( 00 nn κη=η , )( 2
0

2
00 zyxx nnn −=κ  and the 

other components of κ  can be obtained by means of 
cyclic permutation of indices. 

The spin relaxation time could be estimated as 
follows. Let the initial electron state characterized by k 
be polarized along some axis, say, a, which does not 
coincide with )(nκ  and let its spin state be 21+=σ . 
Regarding the spin splitting kεΔ , this state is not longer 
the eigenstate and, as time passes by, it changes. It 
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means, as it was already mentioned above, that another 
component with 21−=σ  mixes up to the state with 

21+=σ . The coherent mixture of these two states 
corresponds, in the classical picture, to the spin 
precession about the )(nκ -axis with the frequency 

hkk εΔ=Ω . 
The spin relaxation arises due to the momentum 

relaxation which is always present to some extent and 
accompanies the spin precession. Since 1<<τΩ pk , 
during the elapse of time between two successive 
scattering events the electron spin revolves only by a 
small angle pkτΩ~ . At each scattering event the 

wavevector k changes randomly and as a result, )(nκ  
changes too. It means that the direction of spin 
precession axis changes randomly also, as the electron 
moves through the crystal (see Fig. 2). After many 
scattering events, the initial “spot”corresponding to the 
initial direction of the precession axis spreads over the 
unit sphere S 2; so, one can treat this process as some 
kind of the diffusion over S 2 with the angular diffusion 
coefficient Ds of about ( ) ppk ττΩ 2~ . The time T which 
is needed for the initial “spot” to run over S 2 uniformly, 
can be estimated as π4~)( 2/1TDs , and hence, 

pkτΩπ 22)4(~T  (4) 

Intuitively it is clear that T >> τp, since one need to have 
many scattering events, in order the initial “spot” to run 
over entire S 2. 

More precise calculations (see [12]) give the 
following formula for kΩ : 

( )
,

3
211

1

1
2315

16)(

3*

*

2
2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ε
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ λ+λ+

×

×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ′
⎟
⎠
⎞

⎜
⎝
⎛ Δ

=εΩ

ge

ee

Em
m

m
m

m
A

hh
k

 (5) 

where gEΔ=λ , Δ is the spin-orbit splitting, Eg is the 

energy gap and the parameter A′  is defined as follows 

∑ −
=′

u uc

yx

e EE

zPuuPs

m
A 2

2
2 h . 

In the letter formula s is a function transformed in 
accordance with 1Γ  irreducible representation of zinc-
blende structure space group, u is the periodic part of the 
Bloch function and z is the function which transforms 
under the tetrahedral group transformations just like Pz 
atomic functions . 

According to G. Fishman and G. Lampel [12], 
)(2 εΩk  for GaAs is approximately equal to 1018ε3, if Ω 

is in rad per second and ε is in eV. 

Since we deal with mesoscopic loop structure and 
2DEG, it is also important to take into account another 
very similar mechanism of spin-splitting occurring in 2D 
electron gas and which was pointed out by Yu. Bychkov 
and E. Rashba [10]. They noticed that in heterostructures 
and surface layers there is lack of inversion asymmetry 
due to the existence of interfaces. This type of 
asymmetry could be called SIA. The corresponding spin-
orbit Hamiltonian, according to [10] is of the form: 

[ ] ν⋅×σξ= kSOH , (6) 

where σ are the Pauli matrices, ν is a unit vector 
perpendicular to the surface and ξ is some constant 
whose numerical value can be established by the 
cyclotron resonance data. 

As in previous case, the operator HSO lifts the 
twofold spin degeneracy at 0≠k  and determines the 
spin-orbit band splitting near 0=k . 

Just in the same way as previously, this mechanism 
leads to the precession of spin axes and because of 
k-dependence and electron scattering, to the diffusion of 
the initial “spot” corresponding to the initial state of spin 
precession axis over entire S 2-surface. The frequency of 
the precession is equal to hνν εΔ=Ω kk , where νεΔ k  
corresponds to the spin splitting due to HSO (we add here 
subscript ν in order to distinguish this mechanism of 
spin precession from the first one). 

It is clear, that if the semiconductor, of which the 
structure in question is made, is of zinc-blende type, we 
could expect these two mechanisms doing 
simultaneously together. 

What is less obvious and which was first pointed out 
by P. Pfeffer and W. Zawadzki [13], that there is no 
simple additivity of these two mechanisms: 

νεΔ+εΔ≠εΔ kktot  (subscript “tot” stands for ”total”). 
According to [13], the totεΔ  depends on the subtleties of 
semiconductor band structure and electron density in 
2DEG. 

Now proceed to estimates of the spin relaxation time 
for the materials of zinc-blende type, such as GaAs, 
InSb, and InAs. To the authors knowledge, the most 
reliable data are known for the first of these three 
materials, so let us start from the estimates for GaAs. If 
one starts with the DP mechanism corresponding to BIA, 
then one can easily estimate Ωk(GaAs) as to be equal 
~ 3.088·1011 Hz. Taking into account SIA and its 
generalization proposed by P. Pfeffer and W. Zawadzki 
supposing the electron density in 2DEG to be equal 
Ns = 1012 cm–2, one get from the data of [13]. that 

)GaAs(totεΔ  is about 0.46 meV. Introducing 
( ) htot, εΔ=νΩ k  and using the approach discussed 

above (see Eq. (4)) we can evaluate the spin relaxation 
time in the framework of the generalized model which 
includes both mechanisms. The time, according to our 
estimations, is approximately equal T ≈ 3.2·10−8. 

Using the data of [12], one can get for the ratios 
)InSb()GaAs( kk ΩΩ  and )InAs()GaAs( kk ΩΩ  the 
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values: 0.378 and 1.58, respectively. As a consequence, 
Hz 10037.8~)InSb( 11⋅Ωk  and Hz 10216.1~)InAs( 11⋅Ωk

. Unfortunately, nothing is known for certain about SIA 
for these materials, as well as for its Pfeffer – Zawadzki 
generalization. Let us suppose, however, that the latter 
one leads to the same consequences for these two 
materials as in the previous case of gallium arsenide. 
Then, at N = 1012 cm−2, totεΔ  should be about twice as 
great as kεΔ , and the same is valid for ( )νΩ ,k . As a 

result, we have for s 104.2~)InSb( 8−⋅T  and for 

s 100.1~)InAs( 6−⋅T . Of course, the latter results are 
only very rough estimates. 

The natural question that is to be answered now is as 
follows: how does this spin relaxation time relate to the 
spin phase relaxation time )(s

ϕτ  introduced above? One 
can relate the spin relaxation time T to the phase 
relaxation time simply in the following way. Since our 
structure is in external magnetic field, the frequency of 
spin precession is the sum of ( )νΩ ,k  and the Zeeman 
frequency hBgz Bμ=Ω : ZΩ+νΩ=Ω ),(k , where g 
stands for the Lande factor. This frequency is a bit 
different for different electrons, since ( )νΩ ,k  depends 
on the electron quasi-momentum k. Thus, the electron 
scattering means that the “oscillator” characterized by Ω 
is ”triggering” all the time from the frequency 

ZΩ+ν′Ω′ )(k  to another one, ZΩ+ν′′Ω ′′ )(k , than to 

ZΩ+ν′′′Ω ′′′ )(k  and so on. Since each of these 
frequencies differ from one another only by some small 
value, each single scattering event leads only to small 
“phase aberration”. Thus, the single “triggering” does 
not yet introduce the irreversibility and phase 
destruction. However, after many scattering events not 
only the direction of initial quasi-momentum changes, 
but its absolute value changes, too. The latter one 
introduces the necessary element of irreversibility and 
means the destruction of the “phase memory” in the spin 
part of electron wavefunction. The complete phase 
destruction occurs after the elapse of time 

12
tot

)(
PZ, )(~~ −

ϕ τΩτ pTs  (we add here the subscript “PZ”, 
to emphasize that we used the generalized Pfeffer – 
Zawadzki model). 

Now compare the EY and precession mechanisms 
and estimate their combined influence on the spin phase 
relaxation. 

To this end, let us make at first some additional 
comments concerning calculations of the spin phase 
relaxation time which is due to EY mechanism presented 
in Sec. 2. As we already mentioned, in Ref. [6] only the 
lower boundary for )(

ph,
s

ϕτ  was established, which 

nevertheless turned out to be much greater than )(e
ϕτ . It  

 

 
 
Fig. 3. Spin phase relaxation time due to Elliot-Yafet 
mechanism versus external magnetic field for three zinc-blende 
type semiconductors.  
 
is possible to get more rigorous theory which could 
make more precise calculations possible. The theory 
could, for instance, utilize the spin-orbit operator of the 
form similar to that one used in [8], in which however, 
U-term should be substituted by )(rqV , where )(rqV  
stands for the perturbation caused by a single phonon. 
Such theory is however beyond the scope of the paper, 
the more so that in this eventual theory there would be 
some other parameters that in their turn are not 
absolutely precise. Since our aim is only to show that 

)()(
ph,

es
ϕϕ τ>>τ , we restrict our treatment rather to 

estimates. But in order to take into account the 
difference between GaAs, InSb and InAs, we include 
into εint the factor ( )αZ , where Z  is the mean atomic 

number of the corresponding compound and ce h2=α . 
This factor is important, because the role of spin-orbit 
interaction increases as the atomic number Z increases 
[11]. 

The results of our calculations are summed up in 
Fig. 3 and Table 1. In Fig. 3, the spin phase relaxation 
times which are due to EY mechanism are shown for 
GaAs, InSb, and InAs as the function of external 
magnetic field. In Table 1, the spin phase relaxation 
times, due to EY mechanism and for two chosen values 
of magnetic field are compared to the relaxation times 
due to precession mechanism. Obviously, one can treat 
these mechanisms as independent and hence, 

)(
PZ,

)(
ph,

)(
111
sss

ϕϕϕ τ
+

τ
=

τ
. 

Now it is clear that at least in accordance with our 
calculations, for GaAs the EY mechanism dominates for 
magnetic fields B ≤ 1T, because )(

ph,
s

ϕτ  is the shortest 
time. For InSb one can conlude from the data of Table 1, 
that for small magnetic field precession mechanism 
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dominates, because )(
PZ,

s
ϕτ  is the shortest time, while for 

T1~B  EY mechanism becomes dominating. 
 
 
Table 1 

 
It is interesting to compare our results with the 

experimental ones. According to the recent data obtained 
by D. Awschalom, J. Kikkawa and others [1, 4], the spin 
decay due to environmental decoherence can exceed 
even 100 ns, and it is in excellent agreement with our 
calculations. So, again we can conclude that the 
condition )()( es LLL ϕϕ >>  can be satisfied. 
 
 
4. Transmission coefficient of the loop structure and 
the current 
 
The current I through the structure considered in Sec. 2, 
for the small applied potential V, can be written as [6, 8]: 

( )

.)()(

22

2

,
,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−×

×π=

∑

∫∫

′′′
′′′

nn
nn

zz

TeVEfEf

dkwdE
h
eI

 (7) 

Here wz is the width of the structure in the z-direction, 
nnT ′′′,  is the transmission coefficient from the state n′  in 

the left-hand end to the state n ′′  in the right-hand end, E 
and zk  are the energy and the transverse wavevector of 
the electrons as they enter from the left-hand end. 

The approach to calculation of the transmission 
coefficient nnT ′′′,  was outlined in [6]; here for reader’s 
convenience, we add only few comments. 

Since the length L of the structure is supposed to be 
greater than )(eLϕ , the key idea is to devide the structure 

into sections of the length smaller than )(eLϕ . Then one 
can combine these successive scatters, considering the 
transport through the states k′ , k ′′  as incoherent, while 
the transport through the states σ′ , σ′′  as coherent 
because of )(sLL ϕ< . As a result, the expression for the 
transmission coefficient is of the form (see [6]): 

[ ] tPrPrPItT ⋅′⋅′⋅⋅−′= −1 , 

where the subscripts σ′ , σ′′  are dropped out. Here I is 
the unit matrix, t is 4 × 1 matrix describing the 
transmission from the left-hand end into the two 

channels, while t′  is 1 × 4 matrix describing the 
transmission from the channels into the right-hand end. 
Similarly, r and r′  are 4 × 4 matrices describing the 
reflections at the two junctions of the channels back into 
the channels. Matrices P and P′  describe forward and 
reverse propagation of the electron wave through the 
channels 1 and 2, respectively. 

The general remark that should be made concerns the 
validity of the Landauer – Büttiker formalism in this 
particular case. It is known [14] that this formalism 
provides a rigorous framework for the description of 
mesoscopic transport as long as transport across the 
structure is coherent. For noncoherent transport, 
however, the situation is more complicated, if there is a 
“vertical flow” of electrons, that is the electron 
transitions from one energy to another. In that sence, our 
case is rather intermediate one: the transport through the 
states σ′ , σ′′  is coherent, while through the states k ′ , 
k ′′  is incoherent. Luckily, sometimes even if “vertical 
flow” is pressent, it can be neglected (see [14], p. 111) 
provided transmission functions are approximately 
constant over the energy range where transport occurs: 
( ) ( ) cTkn ε<<+μ+μ B21 / , 

where 1 ≤ n ≤ 5, ετ is the correlation energy. 
To estimate correlation energy, one can use simple 

relation: )(~ e
c ϕτε h . Since 1312)()( 1010~ −−

ϕϕ −τ>>τ es , 
correlation energy is about 0.6 – 6 meV. So, we assume 
the voltage V applied to the structure to be sufficiently 
small, in order to satisfy the condition above. 

Since we assume the length of the structure )(sLL ϕ> , 
there are no spin flips in two channels considered and 
hence, among the 16 matrix elements of r-matrix (as 
well as r′ ) 8 entries are equal to zero. 

In order to construct P and P′ , it is necessary to note 
that the spin parts of the wavefunctions acquire the 
phase factors due to Larmor spin precession around  
B-axis. Since magnetic fields in the channels are 
different, these phase factors are also different. 

One can treat the states “spin up” and “spin down” as 
the two opposite points on a unit sphere S 2 which can be 
transformed one into another under rotation by an angle 

π±=ϕ  about some axis a. Introduce also formally 
b-axis which is a unit vector of the precession axis: + b 
corresponds to the electron propagation from x = 0 to 
x = L while – b corresponds to reverse propagation, as 
well as θ1 and θ2 are the phase acquired by spin part of 
the wavefunctions in the channels 1 and 2, respectively. 
Then the matrix elements describing the phase shifts in 
these two channels can be written as: 

)exp()exp( ,11 ba iiP θϕ±=± , 

)exp()exp( ,11 ba iiP θ−ϕ±=′± , (8) 

)exp()exp( ,22 ba iiP θϕ±=± , 

)exp()exp( ,22 ba iiP θ−ϕ±=′± , (9) 

s ,)(
ph,

s
ϕτ  

Semiconductor 
B = 0.1T B = 1T 

s ,)(
PZ,

s
ϕτ  

GaAs 2.6·10−9 2.3·10−8 3.2·10−8 

InSb 4.27·10−8 1.3·10−7 2.4·10−8 

InAs 2.9·10−9 2.21·10−7 1.0·10−6 
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The idea of Eqs (8), (9) is to express the elements of the 
matrices P, P′  as two rotations about two independent 
axes. Then, these objects are nothing else but the unitary 
quaternions [15]. As is known [15], any quaternion can 
be written in the form 

αα=αΣ=+++= cicicicicq 3
03322110 ,  

where i0 = 1 and 1321
2
3

2
2

2
1 −==== iiiiii . However, it is 

possible also to define, for instance, i1, i2 as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
01
10

1i , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
0

2 i
i

i , 

where i is the ordinary complex square root of −1, thus 
forcing 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

==
i

i
iii

0
0

213 . 

If these three matrices are multiplied by −i, one obtains 
the Pauli spin matrices. Thus, the quaternion q could 
have been identified with the complex 2-by-2 matrix 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ν−

ν
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−
++

**
3021

2130

u
u

iccicc
iccicc

, 

where u and ν are complex numbers with complex 
conjugates u* and ν*. Replacing 0, 1, and i in these 
complex matrices by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
00
00

, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
01

, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 01

10
, 

respectively, one can obtain a representation of 
quaternions as 4-by-4 matrices. 

Since two channels 1 and 2 are supposed to be 
isolated, in this way the matrices P and P′  can be 
represented as the diagonal 4 × 4-matrices with the 
diagonal elements defined by Eqs (8), (9). After a great 
deal of algebra (see Ref.[6]), we have: 
 

( )
( )

,   ,cos 21

*
434

*
3

*
323

*
2

*
212

*
1

*
424

*
2

*
313

*
1

2
4

2
3

2
2

2
1

θ−θ=θΔθΔ×
×++++++

+++++

++++=

aaaaaaaaaaaa

aaaaaaaa

aaaaT

 

 
where ai (i = 1, ..., 4) do not depend on θ1, θ2 and are the 
complicated functions of rij, ijr′ , ti, it′ . 

Note, that the cosine dependence of the transmission 
coefficient on phase difference in the latter expression is 
the direct consequence of the quaternion representation 
of the propagation matrices, P and P′ . 

 

It is interesting to note that the same cosine 
dependence on phase defference was obtained in the 
experiments with two interfering neutron beams [16], 
which are now considered as the direct verification of 
the 4π-symmetry of spinors. 

5. Calculation of the spin phase shift 
 
Consider the non-relativistic motion of the particle 
(electron) with the spin |s| = 1 / 2 in a two-component 
magnetic field: B = B0 + B1, B0 = (0, B0, 0), and 
B1 = (0, 0, B1), where B1 is an additional uniform 
magnetic field in one of the channels of the structure. 
The spin part of electron wavefunctions can be 
considered as a two-component vector defined by the 
pair of functions ( )>↑χ   and ( )>↓χ   that stand for the 
probability amplitudes of the two possible orientations 
of spin. The spin operator ),,(^

zyx σσσσ  is defined in 
terms of Pauli matrices: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=σ

01
10

x , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=σ

0
0
i

i
y , ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=σ
10

01
x  

Thus, we can treat the mean value of the magnetic 
moment of the electron moving within the channels of 
mesoscopic structure as the classical quantity P = 〈σ〉, its 
evolution under magnetic field being defined by the 
equation: 

[ ]BPP ,*γ=
dt
d , 

where γ* = e / mc is the electron gyromagnetic constant. 
In other words, the vector P can be treated as classical 

magnetic top and, if this classical top having the initial 
orientation ( )000

0 ,, zyx PPP=P  enters magnetic field 
B = (Bx, By, Bz), it begins to precess about magnetic field 
with the frequency Ω = γ*B, where 222

zyx BBBB ++= . 

It is interesting to note that despite its purely 
quantum character, the spin of the particle during its 
movement in external fields can be often treated 
classically. The accuracy of such treatment can be 
estimated by means of the Heisenberg uncertainty 
relation, since classical treatment is possible if one can 
neglect the commutator [r, p], where p is the particle 
momentum operator. So, the measure of accuracy of the 
classical approximation is ppΔ . pΔ  in our case can 

be estimated as tlmm Δ=Δ )ν(ν~ B
2 , where 

Becl h=B  is the magnetic length and ct ωπ2~Δ , 

mcBec =ω  is the cyclotron frequency, while 

Bemcmpp hFνπ2~Δ . Assuming 
17

F cms 103~ −⋅ν  and T1.0~B , we have 
101026.1 −⋅≈Δ pp . Therefore, indeed to a good 

approximation, we can treat the evolution of vector P as 
the evolution of the classical magnetic top under external 
magnetic field. 

Let us introduce now the phase of precessing spin by 
means of the formula 
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∫∫ ′νγ=νμ=νθ−Δ
xx

B xBddtxBgx
0

*

0

),(),( h . 

Since magnetic fields B0 and B1 are uniform, the 
calculation of the phase shift Δθ can easily be done. 

Moreover, it is clear that under certain conditions 
including appropriate structure length L, electron 
velocity and the values of magnetic fields B0, B1, the 
phase shift Δθ = θ2 − θ1 can be multiple of π. Indeed, 

( ) ...2,1   ,0
2
1

2
012 =⎟

⎠
⎞⎜

⎝
⎛ −+νγ=π=θ−θ=θΔ nBBBLn  

If the values of B1, L, ν, n are given, the value of B0 
which is needed for the Δθ to be equal of multiple of π 
can be easily calculated: 

L
nB

n
LB *

2
1

*

0 22 γ
πν

−
πν

γ
= . (10) 

Hence, changing the external magnetic field B0, one 
can change the phase shift and the quantum interference 
from constructive to destructive one and back. Also it is 
seen that Δθ = θ2 − θ1 = ƒ(B0, B1, ν). That is, the phase 
shift generally speaking is different for the electrons 
with different velocities. At first sight, this makes 
matters worse, because it means that the “interference 
pattern” should be blurred. One should remember, 
however, that the temperature is considered to be 
sufficiently low. It means that most of the electrons 
carrying current are on the Fermi surface, that is the 
electron distribution function ƒ(ε) = χ(εF − ε) and ν = νF, 
where χ(...) is the Heaviside step-like function, εF, νF are 
the Fermi energy and Fermi velocity, respectively. 
Someone can be temptated to substitute ν in the latter 
formula by the drift velocity. But the condition 

)()( es LLL ϕϕ >>  does not imply that electrons undergo so 
many collisions that the drift velocity arises. Remember 
that the concept of drift velocity is relevant to 
macroscopic samples, where electrons undergo a great 
many collisions under which (and an external electric 
field) the drift velocity can only be formed. Here instead, 
we have mesoscopic structure where electrons suffer 
only a few collisions after which the phase coherence of 
the orbital part of the electron wavefunctions in the two 
arms of the structure is destroyed. 

As a result, we can substitute in (10) ν by νF 
assuming that most of the electrons carrying current are 
on the Fermi surface and a few collisions which they 
undergo during their movement withing the channels of 
the structure do not change essentially their flight time 
which is still approximately equal to F~ νL . 

So, the calculation by means of (10) taking into 
account the expression for 2T , now can easily be done 
and we have: 

))(cos()2( FνθΔ+= DAKheI , 

where K, A, D are the coefficients dependent on the 
peculiarities of the structure. Now it is clear that 
changing B0 one can approach very deep modulation of 
the conductance and since DA ~ , the “contrast” of the 
“interference pattern” is defined only by the ratio 

F

BF

ε
−ε Tk

. 

So, we conclude that if the structure length L is chosen 
to be )()( es LLL ϕϕ >> , it is indeed possible to “wash out” 
the quantum interference related to phase coherence of 
the „orbital part” of electron wavefunction, retaining at 
the same time that one related to the phase coherence of 
the spin part. Moreover, we can expect this “interference 
pattern” and corresponding current (or conductance) 
modulation to be strong enough in order to be observed. 

It is also interesting to note that current (and 
conductance) oscillations generally speaking, are not 
periodic with respect to B0, the magnetic field by means 
of which these oscillations are controlled. This is due to 
the fact, that while the second term in (10) is linearly 
proportional to n, the first one is inversely proportional 
to it. Another interesting feature of (10) is the quadratic 
dependence of B0 on the static field B1. By means of this 
formula one can easily calculate ΔB0, the changing in 
magnetic field B0 which is needed to change Δθ, for 
example, from π to 2π. The corresponding data for three 
zinc-blende type semiconductors, two chosen values of 
B1 and L = 1.5·10−2 cm are presented in Table 2. 
 
Table 2 

 
 

Keeping in mind the possibility of experimental 
verification of the theory presented in the paper, one can 
conclude from Table 2 that some materials and some 
values of magnetic field B1 are more sutable than the 
others. Perhaps, GaAs is the best material for that 
purpose, while if B1 > 0.2T such experiment for InSb and 
InAs becomes rather impossible. 
 
6. Quantum interference in time-dependent magnetic 
field (quantum beats) 
 

Whenever one deals with a physical phenomenon in 
which the motion of some object can be represented as 
the superposition of two harmonic oscillations with two 
angular frequencies ω1, ω2 which are very close to each 
other (ω1 ≈ ω2), one can expect to observe the beats. 
That is, the resulting almost harmonic oscillation occurs  
 

ΔB0, T 
Semiconductor 

B1 = 0.1T B1 = 0.5T 
GaAs 0.002 0.91 
InSb 3.54 88.68 
InAs 1.07 26.75 
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Fig. 4. Sketch of a two-channel semiconductor mesoscopic 
structure in external time-dependent magnetic fields of 
different amplitudes across the channels. 
 
at the frequency ϖ = 1 / 2 (ω1 + ω2) and with the slowly 
varying amplitude, )ωcos(~)( mod ttA , where 
ωmod = 1 / 2 |ω1 − ω2|. 

Such beats can be easily observed, for instance, in 
acoustics when the beats are induced by two vibrating 
tuning forks. If the frequencies of the forks vibrations, 
ω1 and ω2, differ by less than 10 Hz, neither human ear 
nor brain can distinguish them and the human being 
perceives them as a single tone but with varying 
amplitude [17]. 

Beats in optics, as the beats between incoherent light 
sources, have been observed by A. Forrester, 
R. Gudmundsen and P. Johnson [18]. In their very nice 
experiments, they mixed up two Zeeman components of 
a visible spectral line of Hg atom. The mean frequency 
of corresponding lines was about 5.49·1014 Hz, while the 
frequency difference in the experiments of [18] was 
about 1010 Hz, which corresponds to the microwaves. 

Consider again the loop srtucture similar to that one 
of Sec. 2. The main difference however now is that an 
external magnetic field is time-dependent and its 
amplitude is supposed to be somewhat different in the 
channels 1 and 2 (Fig. 4). 

Suppose the Hamiltonian of an electron is (see also 
[19]): 1100 )()()( ItHItHtH ⊗+⊗= , where 

)())()/((21 2*
0 rUAp +−= tcemH , 

)(^
B1 tH B⋅σμ−= . (11) 

Here all the denotions are as in Sec. 2. Assume the 
characteristic time scale of magnetic field changing is 
much longer than all characteristic electron scattering 
times, spin relaxation time including. Then the main 
results of Refs [6, 8] are applicable to this particular case 
of time-dependent magnetic field. Consider now the 
non-relativistic motion of an electron with the spin 
|s| = 1 / 2 in a loop structure of Fig. 4, where the 
magnetic fields in the two arms of the structure are 
equal: B1 = B01cos ωt and B2 = B02cos ωt. In accordance  

 
 
Fig. 5. Quantum beats in mesoscopic loop structure due to spin 
coherent transport and Larmor precession. Three pictures 
represent current through the structure versus time for three 
different semiconductors. The parameters chosen for the 
calculations are: InSb – 7.50=g , Hz 50=ω ; InAs – 

3.15=g , Hz 15=ω ; GaAs – 50.0=g , Hz 5.0=ω ; 

Gs 10 5−=ΔB  throughout. 
 
 
with general quantum mechanical approach (see, for  
instance, AB phase description given by R. Feynman 
[20]), time-dependent phase of precessing spin (actually, 
the Larmor rotating angle around the field B) can be 
introduced as follows: 
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( ) tdtBgt
t

′′μ=θ ∫
0

B )()( h . (12) 

Here we again suppose the majority of electrons to be at 
the Fermi surface and to have the velocity equal to the 
Fermi velocity νF. 

Then using technique described in previous sections, 
one can calculate the current through the structure, 
which is equal to: 

)))(cos(()2( tDAKheI θΔ+= , (13) 

where K, A, D are the coefficients dependent on the 
peculiarities of the structure and related to 
ai (i = 1, ..., 4), mentioned in Sec. 4. The phase shift 
Δθ(t) acquired by the spin wavefunction of an electron 
moving through the structure, is: 

tBgt ωωΔμ=θΔ sin)()( B h , (14) 

where ΔB = B01 − B02. 
Fig. 5 represents the current through the loop 

structure plotted according to the formulae (13), (14) for 
different semiconductors and some chosen values of ΔB 
and ω; we also assumed DA ~ . It is clearly seen that in 
all cases the curves representing current versus time 
consist of a spire-like pieces separated by rather more 
slow undulations. Obviously, spire-like pieces 
correspond to relatively great values of the prefactor 
(μΒgΔB / ħω) in (14) and the values of sinωt which are 
very close to unity, while relatively slow undulations 
correspond to those values of sinωt that are very nearly 
to zero. Therefore, if one would measure the current 
through the structure in question by means of the device 
with relatively rough time resolution, this fine spire-like 
structure would be smeared out and one could observe 
only that current undulates up and down from its average 
value almost periodically. From Fig. 5, one can easily 
estimate this periodicity: if one has the device which can 
probe the current with time resolution 0.01 s, then the 
period of undulations for InSb would be about 0.06 s, for 
InAs – 0.05 s and for GaAs – about 6 s (notice, that ΔB 
in all cases is supposed to be the same, while ω is chosen 
to be different in order to “compensate” the difference in 
Lande factor g for these three materials). 

It is especially easy to grasp what is going on, if one 
suppose that the frequency of magnetic field oscillations 
ω is so small that the condition ωt << 1 is fulfilled. 
Then, from Eqs (13), (14) we have 

( )))cos(( B tBgDAI hΔμ+∝ . (15) 

It is clear, that since the factor ω0 = μΒgΔB / ħ in the 
latter expression, generally speaking, is large enough 
(for example, if T1~BΔ , Hz 104.4~ω 10

0 ⋅ ), on 
average the current through the structure is very nearly 
to some constant. However, if ΔB becomes very small, 
say, 10−5 − 10−6 Gs, the period T = 2π / ω0 of oscillations 
in (13) becomes equal to 0.14 − 1.4 s and this yields the 
possibility to observe current modulation. 

Thus, the current through the structure should 
oscillate without any apparent change in the structure 
and this kind of oscillations can also be called quantum 
beats. These beats are very similar to the Josephson 
effect. Indeed, in this case the phase difference Δθ(t) is 
driven by the magnetic field (see Eqs (14), (15)) which 
is analogous to the Josephson effect in superconducting 
tunnel junctions, where the phase of Cooper pairs in two 
superconductors separated by the insutator film (so-
called weak link) is related according to 
Δθ(t) = (2eV/ħ) t, where V is the voltage applied to the 
junction and the superconducting Josephson current of 

)(sinmax tII SS θΔ= . 

Let us analize an amazing similarity of these two 
effects more thoroughly. Indeed, while the phase 
difference of the Cooper pairs in the Josephson junction 
driven by an applied voltage is equal Δθ(t) = 2eVt/ħ, the 
phase differens of the electrons spin wavefunction 
acquired during electron transport through the channels 
of the loop structure driven by magnetic field, is equal to 
Δθ(t) = μΒgΔBt/ħ. The effect discussed here differs, 
however, from Josephson one in some important respect. 
In order to grasp it, let us look at the effect discussed in 
the paper, from another point of view. Namely, from the 
the view point of its possible applications to measuring 
the extremely small magnetic field deviations from the 
spatial uniformity. 

It is well known that for many years superconducting 
quantum interference devices (SQUIDs) operating at 4 K 
have been unchallenged as ultrahigh-sensitivity 
magnetic field detectors [21]. They have enabled, for 
instance, biomagnetic imaging, such as mapping of the 
heart activity, mapping of the magnetic fields produced 
by the brain and so on. Since the current through the 
single SQUID (that is, two Josephson junctions in 
parallel, making a superconducting loop) is proportional 
to cos |2eΦ / ħ|, where Φ is the magnetic flux threading 
the superconducting loop, one has, in order to enhance 
sensitivity of the device, to increase the flux and hence, 
the area of the loop. To this end one has to put a set of 
10, 20 or even more Josephson junctions close together 
and equally spaced. Note that 2eΦ / ħ, is nothing else but 
the AB phase acquired by the Cooper pairs during their 
transport along the superconducting loop. Now it is clear 
in what respect the effect discussed in the paper differs 
from the AB one. The phase difference acquired by the 
electron spins does not depend on the flux threading the 
loop, but does depend on the magnetic field difference in 
the channels 1 and 2. It means that this effect perhaps 
could be used for constructing the devices 
complementary to SQUIDs in that respect that they 
could enable to measure the slightest magnetic field 
deviations from the spatial uniformity in extremely small 
scale. How small the measuring area could be, one can 
estimate in a following way. In order to satisfy the 
condition )()( es LLL ϕϕ >> , it is sufficient to get 

cm 105.1~ 2−⋅L , while the distance between the 
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channels 1 and 2 could be about 4.0·10−6 cm with the 
width of the channel of about 1.0·10−6 cm each. Then the 
measuring area can be about 9.0·10−8 cm2; compare this 
value with the millimeter-scale spatial resolution of the 
SQUIDs or even with a somewhat smaller spatial 
resolution of a recently reported subfemtotesla atomic 
magnetometer [22]. The sensitivity of the device based 
on the effect discussed here, can be estimated as to be 
10−11 THz−1/2, while its operating temperature could be 
about 40 K or even more. Indeed, since in the formula 
(11) DA ~ , the “contrast” of the “interference pattern” 
is determined only by the ratio ( ) FBF ETkE −  which 
at a temperature of about 40 K is of the order of 90 %. 

It is also instructive to compare the effect discussed 
in the paper, with other cyclic phenomena such as scalar 
Aharonov – Bohm (SAB) [23] and Aharonov – Casher 
(AC) [24] effects. 

It is well known that in the AB effect a charge 
moving around magnetic flux filament in a region with 
vanishing electromagnetic fields, accumulates the phase 
shift. This is due to gauge invariant coupling between 
the current and electromagnetic vector potentail and for 
that reason, the locally accumulated phase is not gauge 
invariant. Therefore, the AB effect is sometimes termed 
as being nonlocal. On the other hand, in the SAB effect, 
as it was argued by M. Peshkin [23] and in the AC 
effect, as it was shown in [25], the magnetic moment of 
a neutral particle couples directly to the field strenghts, 
either B (as in the case of SAB) or to E (as in the case of 
AS). 

The effect discussed here is very similar to SAB and 
AC, besause it is also brought about by an ordinary 
action of the Maxwell field and hence has the properties 
of all other local interactions. The AB effect is nonlocal 
in that the electron experiences no force and exchanges 
no momentum, energy or angular momentum with the 
electromagnetic field. In our case, just like in case of 
SAB and AC, the Hamiltonian and the equation of 
motion involve contemporaneous Maxwell field in the 
domain of the electron position; thus, the effect is not 
entirely topological in its character. The main difference 
between this effect and SAB and AC is that the former 
deals with charged particles (electrons) in semiconductor 
and could be observable only under special conditions, 
when the “phase memory” related to the orbital part of 
the wavefunction is “washed out”, while the phase 
coherence of the spin part of the wavefunction remains 
intact. Thus, this spin coherence can reveal itself in 
corresponding spin current oscillations. 
 

7. Conclusions 
 

A simple theory of the quantum interference due to 
Larmor precession of an electron spin in a loop structure 
is presented in this paper. We investigate different 
mechanisms of environmental decoherence, such as the 

edge scattering, the EY and precession mechanisms of 
spin relaxation, as well as their influence on the quantum 
spin interference in such structure. It turns out, that the 
time of spin phase relaxation due to edge scattering is 
very long and this mechanism can be neglected, while 
the other two are essential. The EY and precession 
mechanisms thus determine the spin phase relaxation. As 
it is shown, even if the EY and precession mechanisms 
do together, it is still possible nevertheless, to satisfy the 
condition )()( es LLL ϕϕ >> . The latter one determines the 
“spin ballistic” transport in the structure in question, that 
is, the phase relaxation length )(sLϕ  of the spin part of the 
electron wavefunction is assumed to be greater than the 
microstructure length. If in one of the microstructure 
arms there is an additional magnetic field, the spin 
wavefunction acquires a phase shift due to additional 
spin precession around that field. Now, if we suppose 
the microstructure length is chosen to be greater than the 

)(eLϕ , it is possible to “wash out” the quantum 
interference related to phase coherence of the “orbital” 
part of the wavefunction retaining at the same time that 
related to the phase coherence of the spin part and hence, 
reveal the corresponding conductance oscillations. 
Changing the external magnetic field, one can change 
the “interference pattern”, that is, to control the 
conductance modulation. We have shown that the strong 
conductance modulation can be achieved in this way. 

We also considered the spin interference in time-
dependent magnetic field and quantum beats in the loop 
structure that also occurr due to Larmor precession of an 
electron spin. We have shown that if the amplitudes of 
magnetic fields in the channels 1 and 2 of the loop 
structure are a little bit different, say 

Gs 1010~ 65 −− −ΔB , the quantum beats reveal them-
selves as the current modulation with a period depending 
on ΔB as well as on the material which the structure is 
made of. The last one could be used for developing a 
device complementary to SQUIDs, which could make 
possible the measuring of extremely small deviations of 
magnetic fields from their spatial uniformity. It could be 
used perhaps for biomagnetic imaging, such as heart and 
brain activity mapping and so on. 
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