Semiconductor Physics, Quantum Electronics and Optoelectronics, 9 (1) P. 014-021 (2006).
DOI: https://doi.org/10.15407/spqeo9.01.014


References

1. M.E. Lines and A.M. Glass, Principles and applications of ferroelectrics and related phenomena. University Press, Oxford (1978).
2. S.B. Lang, Pyroelectricity: from ancient curiosity to modern imaging tool // Physics Today, 58(8), p. 31- 36 (2005).
https://doi.org/10.1063/1.2062916
3. L.E. Cross, Ferroelectric ceramics: Tailoring properties for specific application. Birkhauser Verlag, Basel (1993).
4. J.F. Scott, Ferroelectric memories. Springer, Berlin and Heidelberg (2000)
https://doi.org/10.1007/978-3-662-04307-3
5. V.M. Fridkin, Ferroelectrics semiconductors. Consultant Bureau, New-York and London (1980).
6. V.B. Sandomirskii, Sh.S. Khalilov, E.V. Chenskii, pn junction in ferroelectric semiconductor // Physics and technics of semiconductors 16, p. 440 (1982).
7. B. Meyer and D. Vanderbilt, Ab initio study of BaTiO3 and PbTiO3 surfaces in external electric field // Phys. Rev. B 63, p. 205426-10, (2001).
https://doi.org/10.1103/PhysRevB.63.205426
8. K.T. Li and V.Ch. Lo, Simulation of oxygen vacancy induced phenomena in ferroelectric thin films // J. Appl. Phys. 97, 034107-8 (2005).
https://doi.org/10.1063/1.1846947
9. A. Sharma, Z.-G. Ban, and S.P. Alpay, Pyroelectric response of ferroelectric thin films // J. Appl. Phys. 95, p. 3618-3625 (2004).
https://doi.org/10.1063/1.1649460
10. A.M. Bratkovsky and A.P. Levanyuk, Smearing of phase transition due to a surface effect or a bulk inhomogeneity in ferroelectric nanostructures // Phys. Rev. Lett. 94, 107601-4 (2005).
https://doi.org/10.1103/PhysRevLett.94.107601
11. V.Ch. Lo, Simulation of thickness effect in thin ferroelectric films using Landau-Khalatnikov theory // J. Appl. Phys. 94, p. 3353-3359 (2003).
https://doi.org/10.1063/1.1598275
12. A. Gordon, S. Dorfman, D. Fuks, Temperatureinduced motion of interphase boundaries in confined ferroelectrics // Philosophical Magazine B, 82, p. 63- 71 (2002).
https://doi.org/10.1080/13642810208211216
13. B. Jaffe, W.R. Cook and H. Jaffe, Piezoelectric ceramics. Academic Press, London and New York (1971).
https://doi.org/10.1016/B978-0-12-379550-2.50015-6
14. L.E. Cross, Relaxor ferroelectrics // Ferroelectrics 76, p. 241-245 (1987).
https://doi.org/10.1080/00150198708016945
15. Y. Gao, K. Uchino, D. Viehland, Effects of rare earth metal substituents on the piezoelectric and polarization properties of Pb(Zr, Ti)O3 - Pb(Sb, Mn)O3 ceramics // J. Appl. Phys. 92, p. 2094-2099 (2002).
https://doi.org/10.1063/1.1490617
16. T. Tamura, K. Matsuura, H. Ashida, K. Konda, S. Otani, Hysteresis variations of (Pb,La)(Zr,Ti)O3 capacitors baked in a hydrogen atmosphere // Appl. Phys. Lett. 74, p. 3395-397 (1999).
https://doi.org/10.1063/1.123356
17. T. Haccart, E. Cattan, D. Remiens, Dielectric, ferroelectric and piezoelectric properties of sputtered PZT thin films on Si substrates: influence of film thickness and orientation // Semiconductor Physics, Quantum Electronics & Optoelectronics, 5 (1), p. 78- 88 (2002).
18. L. Baudry, Tournier, Model for ferroelectric semiconductors thin films accounting for the space varying permittivity // J. Appl. Phys. 97, 024104-11 (2005).
https://doi.org/10.1063/1.1834728
19. A.N. Morozovska, E.A. Eliseev, E. Cattan, D. Remien, Partial polarization switching in ferroelectrics-semiconductors with charged defects // Semiconductor Physics, Quantum Electronics & Optoelectronics 7, p. 251-262 (2004).
20. A.N. Morozovska and E.A. Eliseev, Modelling of dielectric hysteresis loops in ferroelectric semiconductors with charged defects // J. Phys.: Condens. Matter. 16, p. 8937-8956 (2004); E-print http://arXiv.org/cond-mat/0408647.
https://doi.org/10.1088/0953-8984/16/49/010
21. A.N. Morozovska, E.A. Eliseev, Phenomenological description of coercive field decrease in ferroelectric semiconductors with charged inhomogeneities // Physica B 355 p. 236-243 (2005).
https://doi.org/10.1016/j.physb.2004.10.097
22. A.N. Morozovska and E.A. Eliseev, Phenomenological description of polarization switching in ferroelectric semiconductors with charged defects // Phys. status solidi (b) 242, p. 947-961 (2005).
https://doi.org/10.1002/pssb.200402107
23. A.N. Morozovska, Theoretical description of coercive field decrease in ferroelectricssemiconductors with charged defects // Ferroelectrics 317, p. 37-42 (2005).
https://doi.org/10.1080/00150190590963390
24. B.I. Shklovskii and A.L. Efros, Electronic properties of doped semiconductors. Berlin, Springer (1984).
https://doi.org/10.1007/978-3-662-02403-4
25. A.Y. Shik, Electronic Properties of inhomogeneous semiconductors. New-York, Gordon & Breach (1995).
26. Contreras J. Rodrigues, H. Kohlstedt, U. Poppe, R. Waser, Ch. Buchal, Surface treatment effects on the thickness dependence of the remanent polarization of PbZr0.52Ti0.48O3 capacitors // Appl. Phys. Lett. 83, p. 126-128 (2003).
https://doi.org/10.1063/1.1590431
27. M. Shimizu, S. Nakashima, K. Kaibara, H. Fujisawa, H. Niu, Effects of film thickness and grain size on the electrical properties of Pb(Zr, Ti)O3 thin films prepared by MOCVD // Ferroelectrics 241, p. 183- 190 (2000).
https://doi.org/10.1080/00150190008224990
28. M. Tyunina and J. Levoska, Coexistence of ferroelectric and relaxor properties in epitaxial films of Ba1−xSrxTiO3 // Phys. Rev. B 70, 132105-4 (2004).
https://doi.org/10.1103/PhysRevB.70.132105
29. M.D. Glinchuk and A.N. Morozovska, The internal electric field originating from the mismatch effect and its influence on ferroelectric thin film properties // J. Phys.: Condens. Matter. 16, p. 3517-3531 (2004).
https://doi.org/10.1088/0953-8984/16/21/002
30. S.L. Bravina, E. Cattan, N.V. Morozovsky, D. Remiens, Peculiarities and asymmetry of polarization reversal in Pt/PZT-film/Pt:Ti/SiO2/Sisubstrate structures in pyroelectric response investigations // Semiconductor Physics, Quantum Electronics & Optoelectronics 7, p. 263-271 (2004).
31. E.G. Kostsov, Ferroelectric barium-strontium niobate films and multilayer structures // Ferroelectrics 314, p. 169-187 (2005).
https://doi.org/10.1080/00150190590926427