Semiconductor Physics, Quantum Electronics and Optoelectronics, 9 (1) P. 022-028 (2006).
DOI:
https://doi.org/10.15407/spqeo9.01.022
References
1. D.M. Gruen, Nanocrystalline diamond films // Annu. Rev. Mater. Sci. US Government, 29, p. 211-259 (1999). https://doi.org/10.1146/annurev.matsci.29.1.211 | | 2. John C. Angus, and Cliff G. Hayman, Low-pressure, metastable growth of diamond and "diamond like" phases // J. Science 241, p. 913-921 (1988). https://doi.org/10.1126/science.241.4868.913 | | 3. B.V. Spitsyn, and A.E. Alexenko, Origin, currently abilities and some perspectives of development of diamond synthesis from gas phase // Proceedings of 5th Intern. Symposium diamond films, April, Kharkov, Ukraine, p. 122-149 (2002) (in Russian). | | 4. B.V. Spitsyn, L.L. Bouilov, and B.V. Derjaguin, Diamond and diamond-like films: deposition from the vapour phase, structure and properties // Progr. Crystal Growth and Charact. 17, p. 79-170 (1988). https://doi.org/10.1016/0146-3535(88)90001-9 | | 5. T. Hirai, Y. Takagi, O. Shimizu, Y. Suda, and T. Semikina, Five micron diamond particles synthesized in ten seconds // Abstract Book of 15-th European Conference on diamond, diamond-like materials, carbon nanotubes, nitrides and silicon carbide, Riva Del Garda, Trentino, Italy, September (2004). | | 6. A.V. Palnichenko, A.M. Jonas, J.-C. Charlier, A.C. Aronin, and J.-P. Issl, Diamond formation by thermal activation of graphite // J. Nature 402, p. 162-165 (1999). https://doi.org/10.1038/46000 | | 7. M. Yoshikawa, N. Ohtake, and Zukai Kisou Gousei, Diamond. Ohmsha, (1995) (in Japanese). | | 8. A. Chayahara, Y. Kino, Y. Horino, and N. Fujimori, CVD diamond synthesis with high growth rate // New Diamond 20(4), p. 26-27 (2004) (in Japanese). | | 9. R. Velazquer, B. R. Weiner, and G. Morell, Diamond film synthesis at low temperatures // Abstract Book, Elsevier, 15th European Conference on diamond, diamond-like materials, carbon nanotubes, nitrides and silicon carbide "Diamond 2004", 12-17 Sept, 2004, Italy. | | 10. K. Subramanian, W.P. Kang, J.L. Davidson, and W.H. Hofmeister, The effect of growth rate control on the morphology of nanocrystalline diamond // Ibid. | | 11. T. Bauer, M. Schreck, H. Sternschulte, and B. Stritzker, High growth rate homoepitaxial diamond deposition // Ibid. | | 12. T. Teraji, M. Hamada, H. Wada, M. Yamamoto, K. Arima, and T. Ito, High-rate growth of highquality homoepitaxial diamond films by means of high-power microwave plasma chemical vapour deposition // Ibid. | | 13. N. Fujimori, A. Chayahara, Y. Mokuno, Y. Horino, Y. Takasu, H. Kato, and H. Yoshikawa, Characteristics of single crystal diamonds under large growth rate obtained by microwave plasma CVD // Ibid. | | 14. R. Spitzl, and H. Sung-Spitzl, Large area-high growth diamond deposition with uniform microwave plasma // Ibid. | | 15. T.V. Semikina, Y. Takagi, T. Hirai, T. Kawai, O. Shimizu, and Y. Suda, New mechanism of "spark diamond" formation in spark plasma physical process // Abstract Book, Elsevier, 16th European Conference on diamond, diamond-like materials, carbon nanotubes, nitrides and silicon carbide "Diamond 2005", Sept, 2005, France. | | 16. T.A. Voronchev and V.D. Sobolev, Physical basies of electrovacuum devices. Vysshaya shkola, Moscow (1967) (in Russian). | | 17. A.V. Kurdyumov and A.N. Pilyankevich, Phase transformations in carbon and boron nitride. Naukova Dumka, Kiev (1979) (in Russian). | | 18. A.V. Kurdyumov, V.G. Malogolovets, N.V. Novikov, A.N. Pilyankevich, L.A. Shul'man, Polymorphic modifications of carbon and boron nitride. Handbook. Metallurgiya, Moscow (1994) (in Russian). | | 19. Yu.P. Rayzer, Physics of gas discharge. Nauka, Moscow (1987) (in Russian). | |
|
|