Semiconductor Physics, Quantum Electronics and Optoelectronics, 9 (1) P. 022-028 (2006).
DOI: https://doi.org/10.15407/spqeo9.01.022


References

1. D.M. Gruen, Nanocrystalline diamond films // Annu. Rev. Mater. Sci. US Government, 29, p. 211-259 (1999).
https://doi.org/10.1146/annurev.matsci.29.1.211
2. John C. Angus, and Cliff G. Hayman, Low-pressure, metastable growth of diamond and "diamond like" phases // J. Science 241, p. 913-921 (1988).
https://doi.org/10.1126/science.241.4868.913
3. B.V. Spitsyn, and A.E. Alexenko, Origin, currently abilities and some perspectives of development of diamond synthesis from gas phase // Proceedings of 5th Intern. Symposium diamond films, April, Kharkov, Ukraine, p. 122-149 (2002) (in Russian).
4. B.V. Spitsyn, L.L. Bouilov, and B.V. Derjaguin, Diamond and diamond-like films: deposition from the vapour phase, structure and properties // Progr. Crystal Growth and Charact. 17, p. 79-170 (1988).
https://doi.org/10.1016/0146-3535(88)90001-9
5. T. Hirai, Y. Takagi, O. Shimizu, Y. Suda, and T. Semikina, Five micron diamond particles synthesized in ten seconds // Abstract Book of 15-th European Conference on diamond, diamond-like materials, carbon nanotubes, nitrides and silicon carbide, Riva Del Garda, Trentino, Italy, September (2004).
6. A.V. Palnichenko, A.M. Jonas, J.-C. Charlier, A.C. Aronin, and J.-P. Issl, Diamond formation by thermal activation of graphite // J. Nature 402, p. 162-165 (1999).
https://doi.org/10.1038/46000
7. M. Yoshikawa, N. Ohtake, and Zukai Kisou Gousei, Diamond. Ohmsha, (1995) (in Japanese).
8. A. Chayahara, Y. Kino, Y. Horino, and N. Fujimori, CVD diamond synthesis with high growth rate // New Diamond 20(4), p. 26-27 (2004) (in Japanese).
9. R. Velazquer, B. R. Weiner, and G. Morell, Diamond film synthesis at low temperatures // Abstract Book, Elsevier, 15th European Conference on diamond, diamond-like materials, carbon nanotubes, nitrides and silicon carbide "Diamond 2004", 12-17 Sept, 2004, Italy.
10. K. Subramanian, W.P. Kang, J.L. Davidson, and W.H. Hofmeister, The effect of growth rate control on the morphology of nanocrystalline diamond // Ibid.
11. T. Bauer, M. Schreck, H. Sternschulte, and B. Stritzker, High growth rate homoepitaxial diamond deposition // Ibid.
12. T. Teraji, M. Hamada, H. Wada, M. Yamamoto, K. Arima, and T. Ito, High-rate growth of highquality homoepitaxial diamond films by means of high-power microwave plasma chemical vapour deposition // Ibid.
13. N. Fujimori, A. Chayahara, Y. Mokuno, Y. Horino, Y. Takasu, H. Kato, and H. Yoshikawa, Characteristics of single crystal diamonds under large growth rate obtained by microwave plasma CVD // Ibid.
14. R. Spitzl, and H. Sung-Spitzl, Large area-high growth diamond deposition with uniform microwave plasma // Ibid.
15. T.V. Semikina, Y. Takagi, T. Hirai, T. Kawai, O. Shimizu, and Y. Suda, New mechanism of "spark diamond" formation in spark plasma physical process // Abstract Book, Elsevier, 16th European Conference on diamond, diamond-like materials, carbon nanotubes, nitrides and silicon carbide "Diamond 2005", Sept, 2005, France.
16. T.A. Voronchev and V.D. Sobolev, Physical basies of electrovacuum devices. Vysshaya shkola, Moscow (1967) (in Russian).
17. A.V. Kurdyumov and A.N. Pilyankevich, Phase transformations in carbon and boron nitride. Naukova Dumka, Kiev (1979) (in Russian).
18. A.V. Kurdyumov, V.G. Malogolovets, N.V. Novikov, A.N. Pilyankevich, L.A. Shul'man, Polymorphic modifications of carbon and boron nitride. Handbook. Metallurgiya, Moscow (1994) (in Russian).
19. Yu.P. Rayzer, Physics of gas discharge. Nauka, Moscow (1987) (in Russian).