Semiconductor Physics, Quantum Electronics and Optoelectronics, 10 (1) P. 036-039 (2007).


1. Z. Zhang, C.-C. Wang, R. Zakaria, J.Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts // J. Phys. Chem. B 102, p. 10871- 10878 (1998).
2. A.N. Shipway, E. Katz, I. Willner, Nanoparticle arrays on surfaces for electronic, optical, and sensor applications // Chem. Phys. Chem. 1, p. 18- 52 (2000).<18::AID-CPHC18>3.3.CO;2-C
3. Y. Wu, H. Yan, M. Huang, B. Messer, J.H. Song, P. Yang, Inorganic semiconductor nanowires: rational growth, assembly, and novel properties // Chem. Europ. J. 8, p. 1260-1268 (2002).<1260::AID-CHEM1260>3.0.CO;2-Q
4. S. Boujday, F. Wunsch, P. Portes, J.-Francois Bocquet, C. Colbeau-Justin, Photocatalytic and electronic properties of TiO2 powders elaborated by sol-gel route and supercritical drying // Solar Energy Materials & Solar Cells 83, p. 421-433 (2004).
5. J. Jiu, S. Isoda, F. Wang, M. Adachi, Dyesensitized solar cells based on a single-crystalline TiO2 nanorod film // J. Phys. Chem. B 110, p. 2087-2092 (2006).
6. Y. Wu, P. Yang, Direct observation of vaporliquid-solid nanowire growth // J. Amer. Chem. Soc. 123, p. 3165-3166 (2001).
7. S.K. Pradhan, P.J. Reucroft, F. Yang, A. Dozier, Growth of TiO2 nanorods by metalorganic chemical vapor deposition // J. Crystal Growth 256, p. 83-88 (2003).
8. P.D. Markowitz, M. Zach, P.C. Gibbons, R.M. Penner, W.E. Buhro, Phase separation in AlxGa1-xAs nanowhiskers grown by the solutionliquid-solid mechanism // J. Amer. Chem. Soc. 123, p. 4502-4511 (2001).
9. A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires // Science 279, p. 208- 211 (1998).
10. X.-Mei Zhao, Y. Xia, G.M. Whitesides, Soft lithographic methods for nanofabrication // J. Mater. Chem. 7, p. 1069-1074 (1997).
11. T. Sugimoto, X. Zhou, A. Muramatsu, Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 4. Shape control // J. Colloid and Interface Science 259, p. 53-61 (2003).
12. P.D. Cozzoli, A. Kornowski, H. Weller, Lowtemperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods // J. Amer. Chem. Soc. 125, p. 14539-14548 (2003).
13. C.-Sik Kim, B.K. Moon, J.-Ho Park, B.-Chun Choi, H.-Jin Seo, Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant // J. Crystal Growth 257, p. 309-315 (2003).
14. B.B. Lakshmi, P.K. Dorhout, C.R. Martin, Sol-gel template synthesis of semiconductor nanostructures // Chem. Mater. 9, p. 857-862 (1997).
15. M. Zhang, Y. Bandos, K. Wada, Sol-gel template preparation of TiO2 nanotubes and nanorods // J. Mater. Sci. Lett. 20, p. 167-170 (2001).
16. M. Sander, M.J. Cote, W. Gu, B.M. Kile, C.P. Tripp, Template-assisted fabrication of dense, aligned arrays of titania nanotubes with wellcontrolled dimensions on substrates // Advanced Materials 16, p. 2052-2057 (2004).
17. M. Mikhaylova, D.K. Kim, M. Toprak, M. Muhammed, Fabrication of sequential nanostripes by controlled electrodeposition // Mat. Res. Soc. Symp. Proc. 750, p. 1-6 (2003).
18. J. Livage, M. Henry, C. Sanchez, Sol-gel chemistry of transition metal oxides // Progress in Solid State Chemistry 18, p. 259-341 (1988).
19. C. Sanchez, J. Livage, M. Henry, F. Babonneau, Chemical modification of alkoxide precursors // J. Non-crystalline Solids 100, p. 65-76 (1988).
20. L. Miao, S. Tanemura, S. Toh, K. Kaneko, M. Tanemura, Heating-sol-gel template process for the growth of TiO2 nanorods with rutile and anatase structure // Appl. Surf. Sci. 238, p. 175-179 (2004).
21. S.J. Limmer, T.P. Chou, G.Z. Cao, A study on the growth of TiO2 nanorods using sol electrophoresis // J. Mater. Sci. 39, p. 895-901 (2004).