Semiconductor Physics, Quantum Electronics and Optoelectronics, 10 (1) P. 067-071 (2007).
DOI: https://doi.org/10.15407/spqeo10.01.067


References

1. C. Fabry, A. Perot, Theori et applications d'une nouvelle methode de spectroscopie interfrentielle // Ann. Chim. Phys. Peris.16, p. 115-144 (1899).
2. M. Born and E. Wolf, Principles of optics. Pergamon, New York, 1970.
3. A. Thelen, Design of optical interference coatings. McGraw-Hill, New York, 1989.
4. A. Ezbiri, R. Tatam, Passive signal processing of miniature Fabry-Perot interferometric sensors // Proc. SPIE 2341 , p. 114-116 (1994).
https://doi.org/10.1117/12.185068
5. A. Garcia-Valenzuela, M.C. Pena-Gomar, J. Villatoro, Sensitivity analysis of angle-sensitive detectors based on a film resonator // Opt. Eng. 42(4), p. 1084-1092 (2003).
https://doi.org/10.1117/1.1554406
6. R. Goldhanh, S. Shokhovets, J. Scheiner, et. al., Determination of group III nitride film properties by reflectance and spectroscopic ellipsometry studies // Phys. status solidi (a) 177, p. 107-115 (2000).
https://doi.org/10.1002/(SICI)1521-396X(200001)177:1<107::AID-PSSA107>3.0.CO;2-8
7. S.A. Kovalenko, M.P. Lisitsa // Zhurnal prikladnoi spektroskopii 69, p. 388-394 (2002) (in Russian).
https://doi.org/10.1023/A:1019719703836
8. L.A. Holovan', A.F. Konstatinova, K.B. Imahnazieva et. al., Anisotropy of optical dispersion in a layer of nanoporous silicon // Kristalografija 49(1), p. 151-156 (2004) (in Russian).
https://doi.org/10.1134/1.1643977
9. R. Swanepoel, Determination of thickness and optical constants of amorphous silicon // J. Phys. E: Sci. Instrum. 16, p. 1214-1222 (1983).
https://doi.org/10.1088/0022-3735/16/12/023
10. R. Swanepoel, Determination of surface roughess and optical constants of inhomogeneous amorphous silicon films // J. Phys. E: Sci. Instrum. 17, p. 896- 903 (1984).
https://doi.org/10.1088/0022-3735/17/10/023
11. D.B. Kushev, N.N. Zheleva, Y. Demakopoluou, D. Siapkas, A new method of the determination of the thickness, optical constants, and relaxation time of weakly absorbing semiconductor thin films // Infrared Phys. 26 (6), p. 385-393 (1986).
https://doi.org/10.1016/0020-0891(86)90063-1
12. D. Siapkas, D.B. Kushev, N.N. Zheleva, J. Siapkas, I. Lelidis, Optical constants of tin-telluride determined from infrared interference spectra // Infrared Phys. 31(5), p. 425-433 (1991).
https://doi.org/10.1016/0020-0891(91)90019-C
13. D.B. Kushev, N.N. Zheleva, Transmittivity, reflectivities and absorptivities of a semiconductor film with a linear variation in thickness // J. Phys. D: Appl. Phys. 8, p. 1239-1243 (1995).
https://doi.org/10.1088/0022-3727/28/6/029
14. D.B. Kushev, Influence of finite spectral width on the interference spectra of a thin absorbing film on a transparent substrate // Infrared Phys. and Technology 37, p. 259-264 (1996).
https://doi.org/10.1016/1350-4495(95)00046-1
15. V.V. Fillipov, V.P. Kutjavichus, Accuracy of determination of the optical parameters of thin films by the method of the reflectance spectrum extrema envelopes // Zhurn. prikladnoy spektroskopii 70(1), p. 109-115 (2003) (in Russian).
16. P.S. Kosobutskyy, M.S. Karkulovska and M.S. Seheda, Physics basics for modeling the electromagnetic wave processes in optics. Lvivska Politekhnika Publ., Lviv, Ukraine (2003) (in Ukrainian).
17. P.S. Kosobutskyy, M.S. Karkulovska, Ya.P. Kosobutskyy, Bandwidth, sharpness, and visibility of resonances in light reflectance and transmittance of free monolayer Fabry-Perot interferometers // Optika i spektroskopiya 94(1), p. 71-74 (2003) (in Russian).
https://doi.org/10.1134/1.1540203
18. P.S. Kosobutskyy, M.S. Karkulovska, and Ya.P. Kosobutskyy, On phase-amplitude correlation in reflection spectra of Fabry-Perot interferometers // Optika i spektroskopiya 94(3), p. 434-436 (2003) (in Russian).
https://doi.org/10.1134/1.1563691
19. M.V. Lobur and Ya.P. Kosobutskyy // Akusticheskiy Zhurnal 50(4), p. 1-2 (2004) (in Russian).
20. P.S. Kosobutskyy, Inversion of a non-monotonic polarozational angular dependence of the light reflection coefficient from a thin film on an absorbing substrate // Zhurnal prikladnoy spektroskopii 72(2), p. 277-279 (2005) (in Belorussian).
https://doi.org/10.1007/s10812-005-0072-y
21. P.S. Kosobutskyy, A. Morgulis, Simulation of onelayer Fabry-Perot interferometers by the method of enveloping spectra of reflection and transmission of light // Opticheskiy Zhurnal 71(12), p. 63-68 (2004) (in Russian).
https://doi.org/10.1364/JOT.71.000854
22. P.S. Kosobutskyy, A. Morgulis // Zhurnal prikladnoy spektroskopii 71(5), p. 656-672 (2004) (in Belorussian).
23. P.S. Kosobutskyy, A. Morgulis, M.S. Karkulovska, and A.B.Danilov // Ukrainsky Zhurnal Fizich. Optyky 3(5), p. 100-103 (2004) (in Ukrainian).
24. P.S. Kosobutskyy, A. Morgulis // Ukrainsky Fizich. Zhurnal 49(12), p. 1163-1166 (2004) (in Ukrainian).
25. P.S.Kosobutskyy, A. Morgulis // Ukrainsky Fizichny Zhurnal 50(3), p. 230-234 (2005) (in Ukrainian).
26. P.S. Kosobutskyy, A. Morgulis, A.B. Danilov, and M.S. Karkulovska // Ukrainsky Fizich. Zhurnal 50(6), p. 551-555 (in Ukrainian).
27. J.J. Hopfield and D.G. Thomas, Theoretical and experimental effects of spatial dispersion on the optical properties of crystals // Phys.Rev. 132, p. 563-573 (1963).
https://doi.org/10.1103/PhysRev.132.563
28. H.B. Dwigt, Tables of integrals and other mathematical data. McMillan Company, New York, 1961.