Semiconductor Physics, Quantum Electronics and Optoelectronics, 12 (1) P. 031-034 (2009).
DOI: https://doi.org/10.15407/spqeo12.01.031


References

1. A. Laobuthee, $. Wongkasemjit, E. Traversa, RM. Laine, MgAlO, spinel powders from oxide one pot synthesis (OOPS) process for ceramic humidity sensors // J. Europ. Ceram. Soc. 20, p. 91-97 (2000).
https://doi.org/10.1016/S0955-2219(99)00153-3
2. E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future developments // Sensors and Actuators B23, p. 135-156 (1995).
https://doi.org/10.1016/0925-4005(94)01268-M
3. MF. Chang, Gijsbertus de With, C.S. Parker, Computer simulation of dissociative adsorption of water on the surfaces of spinel MgAl,, // J. Amer. Ceram. Soc. 84 (7), p. 1553-1558 (2001).
https://doi.org/10.1111/j.1151-2916.2001.tb00876.x
4. G. Gusmano, G. Montesperelli, _E. Traversa, A. Bearzotti, G.Petroceo, A.D'Amico, C. Di Natale, Magnesium-Aluminium spinel as humidity sensor // Sensors and Actuators B 7, p. 460-463 (1992).
https://doi.org/10.1016/0925-4005(92)80344-W
5. N. Ichinose, Electronic ceramics for sensors // Amer. Ceram. Soc. Bull. 64 (12), p. 1581-1585 (1985).
6. L, Schreyeck, A, Wlosik, H.J. Fuzellier, Influence of the synthesis route on MgAI,O, spinel properties J. Mater. Chem. 11, p. 483-486 (2001).
https://doi.org/10.1039/b005215i
7. H.Klym, A. Ingram, ©. Shpotyuk, J. Filipecki, 1. Hadzaman, Extended positron-trapping defects in insulating MgALO, spinel-type ceramics / Phys. status solidi (¢) 4(3), p. 715-718 (2007).
https://doi.org/10.1002/pssc.200673735
8. R. Krause-Rehberg, H.S. Leipner, Positron Annihita-tion in Semiconductors. Defect Studies. Springer-Verlag, Berlin-Feidelberg-New York, p. 378 (1999).
https://doi.org/10.1007/978-3-662-03893-2
9. G. Consolati, G. Dotelly, F.Quaso, Drying and rewetting of mature cement pastes Studied through positron anihilation lifetime spectroscopy // J. Amer. Ceram. Soc. 84(1), p. 227-229 (2001).
https://doi.org/10.1111/j.1151-2916.2001.tb00637.x
10. J. Dryzyk, Positron trapping model in fine grained sample // Acta Phys. Polonica A 95(1), p. 539-545 (1999)
https://doi.org/10.12693/APhysPolA.95.539
11. O. Shpotyuk, J. Filipecki, Free Volume in Vitreous Chalcogenide Semiconductors: Possibilities of Positron Annihilation Lifetime Study. Wydawnictwo Wyzszej Szkoly Pedagogiczne| w Czestochowie, 2003, p. 144.
12. A. Salgueiro, 0. Somoza, G. Cabrera, G. Consolati, Porosity study on free mineral addition cement paste J/ Cement and Coner. Res. 34, p. 91-97 (2004).
https://doi.org/10.1016/S0008-8846(03)00258-8
13. A. Banerjee, A. Sarkar, D. Sanyal, P. Chatterjee, D. Benerjee, B.K. Chaudhuri, Positron annihilation lifetime 'studies on La0,5Pb0,5Mn1-y,Cry,O3 // Solid State Communs 125, p. 65-70 (2003).
https://doi.org/10.1016/S0038-1098(02)00473-8
14. S. Ghosh, P.M.G. Nambissan, R. Bhattacharya, Positron annihilation and Massbauer spectroscopic studies of In' substitution effects in bulk and nanocrystaline MgMn0,1Fe1,9-xO4 i Phys. Lett. A 325, p. 301-308 (2004).
https://doi.org/10.1016/j.physleta.2004.03.062
15. O. Shpotyuk, A, Ingram, H.Klym, M. Vakiv, I. Hadzaman, J. Filipecki, PAL spectroscopy in application to humidity-sensitive MgAl2O4 ceramics // J. Europ. Ceram, Soe. 28, p. 2981-2984 (2005).
https://doi.org/10.1016/j.jeurceramsoc.2005.03.174
16. L.B. Vynnyk, LV. Hadzaman, HLL. Klym, O.Ya.Mrooz, .1. Shpotyuk, Obtaining of magnesium aluminate ceramics with the improved humidity sensitivity characteristics // Technology and Design in Electronics 2, p.60-62 (2006) (in Russian).
17. J. Kansy, G, Consolati, C, Dauwe, Positronium trapping in free volume of polymers // Rad. Phys. Chem. 58, p. 427-431 (2000).
https://doi.org/10.1016/S0969-806X(00)00195-X