Semiconductor Physics, Quantum Electronics and Optoelectronics, 12 (1) P. 057-063 (2009).
DOI: https://doi.org/10.15407/spqeo12.01.057


References

1. L.A. Golovan, V.Yu. Timoshenko, P.K. Kashkarov, Optical properties of porous-system based nanocomposites // Uspekhi Fizicheskikh Nauk177(6), p. 619-638 (2007) (in Russian).
2. F. Lagugne ́ Labartheta, P. Rochon, A. Natan-sohn, Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene-containing polymer // Appl. Phys. Lett. 75(10), p. 1377-1379 (1999).
https://doi.org/10.1063/1.124699
3. Ch. Oh, M.J. Eskuti, Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation // Optics Express14(24), p. 11870-11884 (2006).
https://doi.org/10.1364/OE.14.011870
4. C. Deumie', H. Giavannini, C. Amra, Angle-resolved ellipsometry of light scattering: discrimination of surface and bulk effects in substrates and optical coatings // Appl. Optics41(16), p. 3362-3369 (2002).
https://doi.org/10.1364/AO.41.003362
5. J.-Ch. Chao, W-Y. Wu, A.Y.-G. Fuh, Diffraction characteristics of a liquid crystal polarization grating analysed using the finite-difference time-domain method // Optics Express15(25), p. 16702-16711 (2007).
https://doi.org/10.1364/OE.15.016702
6. A. Natansohn, B. Kaplan, T. Novikova, A. De Martino, and B. Dre ́villon, Characterization of bidimensional gratings by spectroscopic ellipsometry and angle-resolved Muller polarimetry // Appl. Optics 43(6), p. 1233-1240 (2004).
https://doi.org/10.1364/AO.43.001233
7. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tün-nermann, U. Peschel, A.V. Tishchenko and O. Parriaux, An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings // Optics Express13(26), p. 10448-10456 (2005).
https://doi.org/10.1364/OPEX.13.010448
8. O.I. Barchuk, K.S. Bilenko, V.N. Kurashov, Yu.A. Oberemok, S.N. Savenkov, Fine structure of diffraction order polarization characteristics for submicron grating // 8thUkrainian-Russian seminar "Nanophysics & Nanoelectronics", p. 87-88 (2007), Kyiv, Ukraine.
9. O.I. Barchuk, K.S. Bilenko, Yu.A. Oberemok, S.N. Savenkov, Multiple-angle-of-incidence scattering of lossy grating // VIII Intern. Young Scientists Conference on Applied Physics. р. 83-84 (2008), Kyiv, Ukraine.
10. O.I. Barchuk, E.A. Oberemok, T.V. Rodionova, S.N. Savenkov, Polarization characteristics of the polysilicon films structure // Bulletin of the University of Kiev. Physics & Mathematics2, p. 211-218 (2007) (in Ukrainian).
11. S.N. Savenkov, V.I. Grygoruk, A.S. Klimov, Ye.A. Oberemok, Yu.A. Skoblya, The method of three input polarizations in Mueller-polarimetry using a polarized source of arbitrary ellipticity // Zhurnal prikladnoy spektroskopii75(6), p. 875-880 (2008) (in Russian).
https://doi.org/10.1007/s10812-009-9118-x
12. Y.A. Oberemok, S.N. Savenkov, Solution of the inverse problem of polarimetry for deterministic object on the base of incomplete Mueller matrices // Ukrainian Journal of Physics 47(8), p. 803-807 (2002) (in Ukrainian).
13. S.N. Savenkov, E.A Oberemok, Structure of deterministic Mueller matrices and their reconstruction in the method of three input polarizations // Zhurnal prikladnoy spektroskopii 70(2), p. 224-229 (2003) (in Russian).
14. S.N. Savenkov, E.A. Oberemok, Recovery of the complete Mueller matrix of an arbitrary object in the method of three input polarizations // Zhurnal prikladnoy spektroskopii 71(1), p. 128-132 (2004) (in Russian).
https://doi.org/10.1023/B:JAPS.0000025360.08420.bf
15. V.V. Marienko, B.N. Kolisnichenko, S.N. Saven-kov, Parameters optimization of measurement scheme of scattering light matrix // Optika i spektroskopiya 82(5), p. 845−848 (1997) (in Russian).
16. V.V. Marienko, S.N. Savenkov, Representation of arbitrary Mueller matrix in basis of matrix circular and linear anisotropy // Optika i spektroskopiya 76(1), p. 102−104 (1994) (in Russian).
17. S.N. Savenkov, V.V. Marienko, E.A. Oberemok, O. Sydoruk, Generalized matrix equivalence theorem for polarization theory // Phys. Rev. E 74, 056607(8) (2006).
https://doi.org/10.1103/PhysRevE.74.056607
18. C. Russev Stoyan, Drolet Jean-Pierre, and Ducharme Daniel, Standards for which the ellipsometric parameter Ψ remains insensitive to variations in the angle of incidence // Appl. Optics 37(25) p. 5912-5922 (1998).
https://doi.org/10.1364/AO.37.005912