1. J. Li, J. Xu, Wei-Lin Dai, and K. Fan, Dependence
of Ag deposition methods on the photocatalytic activity and surface
state of TiO 2 with twist-like helix structure . J. Phys. Chem. C, 113,
No.19, p. 8343-8349 (2009). https://doi.org/10.1021/jp8114012
2.
C. Ratanatawanate, Y. Tao, and K.J. Balkus, Photocatalytic activity of
PbS quantum dot/TiO 2 nanotube composites . J. Phys. Chem. C, 113,
No.24, p. 10755-10760 (2009). https://doi.org/10.1021/jp903050h
3.
X.D. Li, D.W. Zhang, Z. Sun, Y.W. Chen, S.M. Huang, Metal-free
indoline-dye-sensitized TiO 2 nanotube solar cells. Microelectronics
J., 40, No.1, p. 108-114 (2009). 4. M. Gratzel, Conversion of sunlight
to electric power by nanocrystalline dye-sensitized solar cells . J.
Photochem. and Photobiol. A: Chemistry, 164, No.1, p. 3-14 (2004).
5.
W. Hu, L. Li, G. Li, C. Tang and L. Sun, High- quality brookite TiO 2
flowers: synthesis, characterization, and dielectric performance .
Crystal Growth & Design, 9, No.8, p. 3676-3682 (2009). https://doi.org/10.1021/cg9004032
6.
G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, and C.A. Grimes, A
review on highly ordered, vertically oriented TiO 2 nanotube arrays:
Fabrication, material properties, and solar energy applications . Solar
Energy Materials and Solar Cells, 90, No.14, p. 2011-2075 (2006). https://doi.org/10.1016/j.solmat.2006.04.007
7.
K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X. Feng,
M. Paulose, J.A. Seabold, K.-S. Choi, and C.A. Grimes, Recent advances
in the use of TiO 2 nanotube and nanowire arrays for oxidative
photoelectrochemistry . J. Phys. Chem. C, 113, No.16, p. 6329-6359
(2009). https://doi.org/10.1021/jp809385x
8.
T. Okato, T. Sakano, and M. Obaro, Suppression of photocatalitic
efficiency in N-doped anatase films. Phys. Rev. 72, No.11, p.
115124-115129 (2005). https://doi.org/10.1103/PhysRevB.72.115124
9. J.M. Sullivan and S.C. Erwin, Theory of dopants and defects in Co-doped TiO 2 anatase. arXiv:cond- mat/0211614v2.
10.
L.C.J. Pereira, M.R. Nunes, O.C. Monteiro, A.J. Silvestre, Magnetic
properties of Co-doped TiO 2 anatase nanopowders. arXiv.org >
cond-mat > arXiv:0809.1256v2.
11. D.J. Mowbray, J.I.
Martinez, J.M.G. Lastra, K.S. Thygesen, and K.W. Jacobsen, Stability
and electronic properties of TiO 2 : nanostructures with and without B
and N doping. J. Phys. Chem. 113, No.28, p. 12301-12308 (2009).
13.
W. Choi, A. Termin, and M.R. Hoffmann, The role of metal ion depands in
quantum-sized TiO 2 : correlation between photoreactivity and charge
carrier recombination dynamics . J. Phys. Chem. 98, No.51, p.
13669-13679 (1994). https://doi.org/10.1021/j100102a038
14.
Y.-F. Tu, S.-Y. Huang, J.-P. Sang, and X.-W. Zou, Synthesis and
photocatalytic properties of Sn-doped TiO 2 : nanotube arrays . J.
Alloys and Compounds 482, No.1-2, p. 382-387 (2009). https://doi.org/10.1016/j.jallcom.2009.04.027
15.
W. Wunderlich, L. Miao, M. Tanemura, S. Tanemura, P. Jin, K. Kaneko, A.
Terai, N. Nabatova-Gabin and R. Belkada, Ab-initio calculations of the
optical band-gap of TiO 2 thin films. Arxiv/condmat/0404222.
16.
Tian-hu Xu, Chen-lu Song, Yong Liu, Gao-rong Han, Band structures of
TiO 2 doped with N, C and B. J. Zhejiang Univ. SCIENCE B, 7, No.4, p.
299- 303 (2006). https://doi.org/10.1631/jzus.2006.B0299
17.
T. Sasaki, Y. Komatsy, Y. Fujiki, Protonated pentatitanate:
preparation, characterizations, and cation intercalation. Chem. Mater.,
4, No.4, p. 894- 899 (1992). 18. I.F. Mironyuk, V.V. Lobanov, B.K.
Ostafiichuk, I.I. Grigorchak, R.V. Il'nitsky, Electron structure and
properties of titanium dioxide intercalated with lithium. Fizyka i
khimiya tverd. tila, 2(3), p. 493- 499 (2001), in Ukrainian.
19.
Y. Oua, J. Lina, S. Fanga and D. Liao, MWNT– TiO 2 :Ni composite
catalyst: A new class of catalyst for photocatalytic H 2 evolution from
water under visible light illumination. Chem. Phys. Lett., 429, No.
1-3, p. 199-203 (2006). https://doi.org/10.1016/j.cplett.2006.08.024
20.
T. Deguchi, K. Imai, H. Matsui, M. Iwasaki, H. Tada, S. Ito, Rapid
electroplating of photocatalytically highly active TiO 2 -Zn
nanocomposite films on steel . J. Mater. Sci. 36, No.19, p. 4723-4729
(2001). https://doi.org/10.1023/A:1017927021397
21.
L.A. Errico, G. Fabricius, M. Renterı, P. de la Presa, and M. Forker,
Anisotropic relaxations introduced by Cd impurities in rutile TiO 2 :
First-principles calculations and experimental support. Phys. Rev.
Lett., 89, No.5, p. 055503-1 – 055503-4 (2002).
23.
G. Liu, C. Sun, L. Cheng, Y. Jin, H. Lu, L. Wang, S.C. Smith, G.Q. Lu,
H.-M. Cheng, Efficient promotion of anatase TiO 2 photocatalysis via
bifunctional surface-terminating Ti-O-B-N structures . J. Phys. Chem.
C, 113, No.28, p. 12317-12324 (2009). https://doi.org/10.1021/jp900511u
26.
M. Zhang, Z. Jin, J. Zhang, X. Guo, J. Yang, W. Li, X. Wang, Z. Zhang,
Effect of annealing temperature on morphology, structure and
photocatalytic behavior of nanotubed H 2 Ti 2 O 4 ·(OH) 2 . J.
Molecular Catalysis A: Chem. 217, No.1/2, p. 203- 210 (2004). https://doi.org/10.1016/j.molcata.2004.03.032
27.
S. Zhang, W. Li, Z. Jin, J. Yang, J. Zhang, Z. Du, Z. Zhang, Study on
ESR and inter-related properties of vacuum-dehydrated nanotubed titanic
acid . J. Solid State Chem. 177, No.4/5, p. 1365-1371 (2004). https://doi.org/10.1016/j.jssc.2003.11.027
28.
J. Yu, Y. Yu, B. Cheng, C. Trapalis, Effects of calcination temperature
on the microstructures and photocatalytic activity of titanate
nanotubes . J. Molecular Catalysis A: Chem. 249, No.1/2, p. 135- 142
(2006). https://doi.org/10.1016/j.molcata.2006.01.003
29.
C.-C. Tsai, H. Teng, Regulation of the physical characteristics of
titania. Nanotube aggregates synthesized from hydrothermal treatment .
Chem. Mater. 16, No.22, p. 4352-4358 (2004). https://doi.org/10.1021/cm049643u
30.
G.R. Hearne, J. Zhao, A.M. Dawe, V. Pischedda, M. Maaza, M.K.
Nieuwoudt, P. Kibasomba, O. Nemraoui, and J.D. Comins, Effect of grain
size on structural transitions in anatase TiO 2 : A Raman spectroscopy
study at high pressure. Phys. Rev. B 70, 134102 (2004). https://doi.org/10.1103/PhysRevB.70.134102
31.
S.J. Rigby, A.H.R. Al-Obaidi, S.-K. Lee, D. McStay, P.K.J. Robertson,
The application of Raman and anti-stokes Raman spectroscopy for in situ
monitoring of structural changes in laser irradiated titanium dioxide
materials . Appl. Surf. Sci. 252, p. 7948-7952 (2006). https://doi.org/10.1016/j.apsusc.2005.10.003
32.
W. Ma, Z. Lu, M. Zhang, Investigation of structural transformations in
nanophase titanium dioxide by Raman spectroscopy. Appl. Phys. A 66, p.
621-627 (1998). https://doi.org/10.1007/s003390050723
33.
Y. Masuda, T. Ohji, K. Kato, Multineedle TiO 2 nanostructures,
self-assembled surface coatings, and their novel properties. Crystal
Growth & Design, 10, No.2, p. 913-922 (2010). https://doi.org/10.1021/cg901238m
34. C. Liu, S. Yang, Synthesis of angstrom-scale anatase titania atomic wires. ACS NANO 3, No.4, p. 1025-1031 (2009). https://doi.org/10.1021/nn900157r
35.
L. Qian, Z.-L. Du, S.-Y. Yang, Z.-S. Jin, Raman study of titania
nanotube by soft chemical process. J. Molecular Structure 749, No. 1-3,
p. 103-107 (2005). https://doi.org/10.1016/j.molstruc.2005.04.002
36.
S. Zhou, E. Čižmar, K. Potzger, M. Krause, G. Talut, M. Helm, J.
Fassbender, S.A. Zvyagin, J. Wosnitza, H. Schmidt, Origin of magnetic
moments in defective TiO 2 single crystals . Phys. Rev. B 79, 113201
(2009). https://doi.org/10.1103/PhysRevB.79.113201
37.
Y.V. Kolen'ko, K.A. Kovnir, A.I. Gavrilov, A.V. Garshev, J. Frantti,
O.I. Lebedev, B.R. Churagulov, G. Van Tendeloo, M. Yoshimura,
Hydrothermal synthesis and characterization of nanorods of various
titanates and titanium dioxide. J. Phys. Chem. B, 110, No.9, p.
4030-4038 (2006). https://doi.org/10.1021/jp055687u
38.
H.N. Ghosh, S. Adhikari, Trap state emission from TiO 2 nanoparticles
in microemulsion solutions . Langmuir, 17, p. 4129-4130 (2001). https://doi.org/10.1021/la010062i
39.
B. Ohler and W. Langel, Molecular dynamics simulations on the interface
between titanium dioxide and water droplets: A new model for the
contact angle . J. Phys. Chem. C, 113, No.23, p. 10189-10197 (2009). https://doi.org/10.1021/jp811257x
40.
F. Allegretti, S. O'Brien, M. Polcik, D.I. Sayago, and D.P. Woodruff,
Adsorption bond length for H 2 O on TiO 2 (110): A key parameter for
theoretical understanding . Phys. Rev. Lett. 95, p. 226104 (2005). https://doi.org/10.1103/PhysRevLett.95.226104
41.
R. Luschtinetz, J. Frenzel, T. Milek, G. Seifert, Adsorption of
phosphonic acid at the TiO 2 anatase (101) and rutile (110) surfaces.
J. Phys. Chem. C, 113, No.14, p. 5730-5740 (2009). https://doi.org/10.1021/jp8110343
42.
D. Wu, J. Liu, X. Zhao, A. Li, Y. Chen, N. Ming, Sequence of events for
the formation of titanate nanotubes, nanofibers, nanowires, and
nanobelts . Chem. Mater., 18, No.2, p. 547-553 (2006). https://doi.org/10.1021/cm0519075
43.
B. Zhu, Z. Sui, S. Wang, X. Chen, S. Zhang, S. Wu, W. Huang,
Alternative approaches to fabrication of gold-modified TiO 2 nanotubes.
Materials research bulletin 41, p. 1097-1104 (2006). https://doi.org/10.1016/j.materresbull.2005.11.008
44.
S. Zhang, L.-M. Peng, Q. Chen, G.H. Du, G. Dawson, and W.Z. Zhou,
Formation mechanism of H 2 Ti 3 O 7 nanotubes. Phys. Rev. Lett. 91,
No.25, p. 256103 (2003). https://doi.org/10.1103/PhysRevLett.91.256103
45.
R. Menzel, A.M. Peiro, J.R. Durrant, M.S.P. Shaffer, Impact of
hydrothermal processing conditions on high aspect ratio titanate nano-
structures. Chem Mater., 18, p. 6059-6068 (2006). https://doi.org/10.1021/cm061721l
46.
B.D. Yao, Y.F. Chan, X.Y. Zhang, W.F. Zhang, Z.Y. Yang, N. Wang,
Formation mechanism of TiO 2 nanotubes. Appl. Phys. Lett., 82, No.2, p.
281-283 (2003). https://doi.org/10.1063/1.1537518
47.
J.S. Jang, S.H. Choi, D.H. Kim, J.W. Jang, K.S. Lee, J.S. Lee, Enhanced
photocatalytic hydrogen production from water-methanol solution by
nickel intercalated into titanate nanotube . J. Phys. Chem. C, 113,
No.20, p. 8990-8996 (2009). https://doi.org/10.1021/jp900653r
48.
S. Zhang, Q. Chen, L.-M. Peng, Structure and formation of H 2 Ti 3 O 7
nanotubes in an alkali environment. Phys. Rev. B, 71, p. 014104 (2005). https://doi.org/10.1103/PhysRevB.71.014104
49.
D. Wang, F. Zhou, Y. Liu, W. Liu, Synthesis and characterization of
anatase TiO 2 nanotubes with uniform diameter from titanium powder .
Mater. Lett. 62, p. 1819-1822 (2008). https://doi.org/10.1016/j.matlet.2007.10.011
50.
J.P. Xu, S.B. Shi, L. Li, J.F. Wang, L.Y. Lv, F.M. Zhang, Y.W. Du,
Effect of manganese ions concentration on the anatase-rutile phase
transformation of TiO 2 films. J. Phys. Chem. Solids 70, p. 511-515
(2009). https://doi.org/10.1016/j.jpcs.2008.06.113
51.
Y.V. Kolen'ko, K.A. Kovnir, A.I. Gavrilov, A.V. Garshev, P.E. Meskin,
B.R. Churagulov, M. Bouchard, C. Colbeau-Justin, O.I. Lebedev, G. Van
Tendeloo, M. Yoshimura, Structural, textural, and electronic properties
of a nanosized mesoporous Zn x Ti 1-x O 2-x solid solution prepared by
a supercritical drying route. J. Phys. Chem. B, 109, No.43, p.
20303-20309 (2005). https://doi.org/10.1021/jp0535341