Semiconductor Physics, Quantum Electronics & Optoelectronics. 2011. V. 14, N 1. P. 021-030.
https://doi.org/10.15407/spqeo14.01.021



References 

1. J. Li, J. Xu, Wei-Lin Dai, and K. Fan, Dependence of Ag deposition methods on the photocatalytic activity and surface state of TiO 2 with twist-like helix structure . J. Phys. Chem. C, 113, No.19, p. 8343-8349 (2009).
https://doi.org/10.1021/jp8114012
 
2. C. Ratanatawanate, Y. Tao, and K.J. Balkus, Photocatalytic activity of PbS quantum dot/TiO 2 nanotube composites . J. Phys. Chem. C, 113, No.24, p. 10755-10760 (2009).
https://doi.org/10.1021/jp903050h
 
3. X.D. Li, D.W. Zhang, Z. Sun, Y.W. Chen, S.M. Huang, Metal-free indoline-dye-sensitized TiO 2 nanotube solar cells. Microelectronics J., 40, No.1, p. 108-114 (2009). 4. M. Gratzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells . J. Photochem. and Photobiol. A: Chemistry, 164, No.1, p. 3-14 (2004).
 
5. W. Hu, L. Li, G. Li, C. Tang and L. Sun, High- quality brookite TiO 2 flowers: synthesis, characterization, and dielectric performance . Crystal Growth & Design, 9, No.8, p. 3676-3682 (2009).
https://doi.org/10.1021/cg9004032
 
6. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, and C.A. Grimes, A review on highly ordered, vertically oriented TiO 2 nanotube arrays: Fabrication, material properties, and solar energy applications . Solar Energy Materials and Solar Cells, 90, No.14, p. 2011-2075 (2006).
https://doi.org/10.1016/j.solmat.2006.04.007
 
7. K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X. Feng, M. Paulose, J.A. Seabold, K.-S. Choi, and C.A. Grimes, Recent advances in the use of TiO 2 nanotube and nanowire arrays for oxidative photoelectrochemistry . J. Phys. Chem. C, 113, No.16, p. 6329-6359 (2009).
https://doi.org/10.1021/jp809385x
 
8. T. Okato, T. Sakano, and M. Obaro, Suppression of photocatalitic efficiency in N-doped anatase films. Phys. Rev. 72, No.11, p. 115124-115129 (2005).
https://doi.org/10.1103/PhysRevB.72.115124
 
9. J.M. Sullivan and S.C. Erwin, Theory of dopants and defects in Co-doped TiO 2 anatase. arXiv:cond- mat/0211614v2.
 
10. L.C.J. Pereira, M.R. Nunes, O.C. Monteiro, A.J. Silvestre, Magnetic properties of Co-doped TiO 2 anatase nanopowders. arXiv.org > cond-mat > arXiv:0809.1256v2.
 
11. D.J. Mowbray, J.I. Martinez, J.M.G. Lastra, K.S. Thygesen, and K.W. Jacobsen, Stability and electronic properties of TiO 2 : nanostructures with and without B and N doping. J. Phys. Chem. 113, No.28, p. 12301-12308 (2009).
 
12. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: syntesis, properties, modifications, and applications // Chem. Rev. 107, No.7, p. 2891-2959 (2007).
https://doi.org/10.1021/cr0500535
 
13. W. Choi, A. Termin, and M.R. Hoffmann, The role of metal ion depands in quantum-sized TiO 2 : correlation between photoreactivity and charge carrier recombination dynamics . J. Phys. Chem. 98, No.51, p. 13669-13679 (1994).
https://doi.org/10.1021/j100102a038
 
14. Y.-F. Tu, S.-Y. Huang, J.-P. Sang, and X.-W. Zou, Synthesis and photocatalytic properties of Sn-doped TiO 2 : nanotube arrays . J. Alloys and Compounds 482, No.1-2, p. 382-387 (2009).
https://doi.org/10.1016/j.jallcom.2009.04.027
 
15. W. Wunderlich, L. Miao, M. Tanemura, S. Tanemura, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabin and R. Belkada, Ab-initio calculations of the optical band-gap of TiO 2 thin films. Arxiv/condmat/0404222.
 
16. Tian-hu Xu, Chen-lu Song, Yong Liu, Gao-rong Han, Band structures of TiO 2 doped with N, C and B. J. Zhejiang Univ. SCIENCE B, 7, No.4, p. 299- 303 (2006).
https://doi.org/10.1631/jzus.2006.B0299
 
17. T. Sasaki, Y. Komatsy, Y. Fujiki, Protonated pentatitanate: preparation, characterizations, and cation intercalation. Chem. Mater., 4, No.4, p. 894- 899 (1992). 18. I.F. Mironyuk, V.V. Lobanov, B.K. Ostafiichuk, I.I. Grigorchak, R.V. Il'nitsky, Electron structure and properties of titanium dioxide intercalated with lithium. Fizyka i khimiya tverd. tila, 2(3), p. 493- 499 (2001), in Ukrainian.
 
19. Y. Oua, J. Lina, S. Fanga and D. Liao, MWNT– TiO 2 :Ni composite catalyst: A new class of catalyst for photocatalytic H 2 evolution from water under visible light illumination. Chem. Phys. Lett., 429, No. 1-3, p. 199-203 (2006).
https://doi.org/10.1016/j.cplett.2006.08.024
 
20. T. Deguchi, K. Imai, H. Matsui, M. Iwasaki, H. Tada, S. Ito, Rapid electroplating of photocatalytically highly active TiO 2 -Zn nanocomposite films on steel . J. Mater. Sci. 36, No.19, p. 4723-4729 (2001).
https://doi.org/10.1023/A:1017927021397
 
21. L.A. Errico, G. Fabricius, M. Renterı, P. de la Presa, and M. Forker, Anisotropic relaxations introduced by Cd impurities in rutile TiO 2 : First-principles calculations and experimental support. Phys. Rev. Lett., 89, No.5, p. 055503-1 – 055503-4 (2002).
 
22. Joint Committee on Powder Diffraction Standards (JCPDS), Card No. 21-1272, Swurthmore, PA.
 
23. G. Liu, C. Sun, L. Cheng, Y. Jin, H. Lu, L. Wang, S.C. Smith, G.Q. Lu, H.-M. Cheng, Efficient promotion of anatase TiO 2 photocatalysis via bifunctional surface-terminating Ti-O-B-N structures . J. Phys. Chem. C, 113, No.28, p. 12317-12324 (2009).
https://doi.org/10.1021/jp900511u
 
24. Joint Committee on Powder Diffraction Standards (JCPDS), Card No. 21-1276, Swurthmore, PA.
 
25. V. Samuel, R. Pasricha, V. Ravi, Synthesis of nanocrystalline rutile. Ceramics Intern. 31, No.4, p. 555-557 (2005).
https://doi.org/10.1016/j.ceramint.2004.07.003
 
26. M. Zhang, Z. Jin, J. Zhang, X. Guo, J. Yang, W. Li, X. Wang, Z. Zhang, Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H 2 Ti 2 O 4 ·(OH) 2 . J. Molecular Catalysis A: Chem. 217, No.1/2, p. 203- 210 (2004).
https://doi.org/10.1016/j.molcata.2004.03.032
 
27. S. Zhang, W. Li, Z. Jin, J. Yang, J. Zhang, Z. Du, Z. Zhang, Study on ESR and inter-related properties of vacuum-dehydrated nanotubed titanic acid . J. Solid State Chem. 177, No.4/5, p. 1365-1371 (2004).
https://doi.org/10.1016/j.jssc.2003.11.027
 
28. J. Yu, Y. Yu, B. Cheng, C. Trapalis, Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes . J. Molecular Catalysis A: Chem. 249, No.1/2, p. 135- 142 (2006).
https://doi.org/10.1016/j.molcata.2006.01.003
 
29. C.-C. Tsai, H. Teng, Regulation of the physical characteristics of titania. Nanotube aggregates synthesized from hydrothermal treatment . Chem. Mater. 16, No.22, p. 4352-4358 (2004).
https://doi.org/10.1021/cm049643u
 
30. G.R. Hearne, J. Zhao, A.M. Dawe, V. Pischedda, M. Maaza, M.K. Nieuwoudt, P. Kibasomba, O. Nemraoui, and J.D. Comins, Effect of grain size on structural transitions in anatase TiO 2 : A Raman spectroscopy study at high pressure. Phys. Rev. B 70, 134102 (2004).
https://doi.org/10.1103/PhysRevB.70.134102
 
31. S.J. Rigby, A.H.R. Al-Obaidi, S.-K. Lee, D. McStay, P.K.J. Robertson, The application of Raman and anti-stokes Raman spectroscopy for in situ monitoring of structural changes in laser irradiated titanium dioxide materials . Appl. Surf. Sci. 252, p. 7948-7952 (2006).
https://doi.org/10.1016/j.apsusc.2005.10.003
 
32. W. Ma, Z. Lu, M. Zhang, Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy. Appl. Phys. A 66, p. 621-627 (1998).
https://doi.org/10.1007/s003390050723
 
33. Y. Masuda, T. Ohji, K. Kato, Multineedle TiO 2 nanostructures, self-assembled surface coatings, and their novel properties. Crystal Growth & Design, 10, No.2, p. 913-922 (2010).
https://doi.org/10.1021/cg901238m
 
34. C. Liu, S. Yang, Synthesis of angstrom-scale anatase titania atomic wires. ACS NANO 3, No.4, p. 1025-1031 (2009).
https://doi.org/10.1021/nn900157r
 
35. L. Qian, Z.-L. Du, S.-Y. Yang, Z.-S. Jin, Raman study of titania nanotube by soft chemical process. J. Molecular Structure 749, No. 1-3, p. 103-107 (2005).
https://doi.org/10.1016/j.molstruc.2005.04.002
 
36. S. Zhou, E. Čižmar, K. Potzger, M. Krause, G. Talut, M. Helm, J. Fassbender, S.A. Zvyagin, J. Wosnitza, H. Schmidt, Origin of magnetic moments in defective TiO 2 single crystals . Phys. Rev. B 79, 113201 (2009).
https://doi.org/10.1103/PhysRevB.79.113201
 
37. Y.V. Kolen'ko, K.A. Kovnir, A.I. Gavrilov, A.V. Garshev, J. Frantti, O.I. Lebedev, B.R. Churagulov, G. Van Tendeloo, M. Yoshimura, Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide. J. Phys. Chem. B, 110, No.9, p. 4030-4038 (2006).
https://doi.org/10.1021/jp055687u
 
38. H.N. Ghosh, S. Adhikari, Trap state emission from TiO 2 nanoparticles in microemulsion solutions . Langmuir, 17, p. 4129-4130 (2001).
https://doi.org/10.1021/la010062i
 
39. B. Ohler and W. Langel, Molecular dynamics simulations on the interface between titanium dioxide and water droplets: A new model for the contact angle . J. Phys. Chem. C, 113, No.23, p. 10189-10197 (2009).
https://doi.org/10.1021/jp811257x
 
40. F. Allegretti, S. O'Brien, M. Polcik, D.I. Sayago, and D.P. Woodruff, Adsorption bond length for H 2 O on TiO 2 (110): A key parameter for theoretical understanding . Phys. Rev. Lett. 95, p. 226104 (2005).
https://doi.org/10.1103/PhysRevLett.95.226104
 
41. R. Luschtinetz, J. Frenzel, T. Milek, G. Seifert, Adsorption of phosphonic acid at the TiO 2 anatase (101) and rutile (110) surfaces. J. Phys. Chem. C, 113, No.14, p. 5730-5740 (2009).
https://doi.org/10.1021/jp8110343
 
42. D. Wu, J. Liu, X. Zhao, A. Li, Y. Chen, N. Ming, Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts . Chem. Mater., 18, No.2, p. 547-553 (2006).
https://doi.org/10.1021/cm0519075
 
43. B. Zhu, Z. Sui, S. Wang, X. Chen, S. Zhang, S. Wu, W. Huang, Alternative approaches to fabrication of gold-modified TiO 2 nanotubes. Materials research bulletin 41, p. 1097-1104 (2006).
https://doi.org/10.1016/j.materresbull.2005.11.008
 
44. S. Zhang, L.-M. Peng, Q. Chen, G.H. Du, G. Dawson, and W.Z. Zhou, Formation mechanism of H 2 Ti 3 O 7 nanotubes. Phys. Rev. Lett. 91, No.25, p. 256103 (2003).
https://doi.org/10.1103/PhysRevLett.91.256103
 
45. R. Menzel, A.M. Peiro, J.R. Durrant, M.S.P. Shaffer, Impact of hydrothermal processing conditions on high aspect ratio titanate nano- structures. Chem Mater., 18, p. 6059-6068 (2006).
https://doi.org/10.1021/cm061721l
 
46. B.D. Yao, Y.F. Chan, X.Y. Zhang, W.F. Zhang, Z.Y. Yang, N. Wang, Formation mechanism of TiO 2 nanotubes. Appl. Phys. Lett., 82, No.2, p. 281-283 (2003).
https://doi.org/10.1063/1.1537518
 
47. J.S. Jang, S.H. Choi, D.H. Kim, J.W. Jang, K.S. Lee, J.S. Lee, Enhanced photocatalytic hydrogen production from water-methanol solution by nickel intercalated into titanate nanotube . J. Phys. Chem. C, 113, No.20, p. 8990-8996 (2009).
https://doi.org/10.1021/jp900653r
 
48. S. Zhang, Q. Chen, L.-M. Peng, Structure and formation of H 2 Ti 3 O 7 nanotubes in an alkali environment. Phys. Rev. B, 71, p. 014104 (2005).
https://doi.org/10.1103/PhysRevB.71.014104
 
49. D. Wang, F. Zhou, Y. Liu, W. Liu, Synthesis and characterization of anatase TiO 2 nanotubes with uniform diameter from titanium powder . Mater. Lett. 62, p. 1819-1822 (2008).
https://doi.org/10.1016/j.matlet.2007.10.011
 
50. J.P. Xu, S.B. Shi, L. Li, J.F. Wang, L.Y. Lv, F.M. Zhang, Y.W. Du, Effect of manganese ions concentration on the anatase-rutile phase transformation of TiO 2 films. J. Phys. Chem. Solids 70, p. 511-515 (2009).
https://doi.org/10.1016/j.jpcs.2008.06.113
 
51. Y.V. Kolen'ko, K.A. Kovnir, A.I. Gavrilov, A.V. Garshev, P.E. Meskin, B.R. Churagulov, M. Bouchard, C. Colbeau-Justin, O.I. Lebedev, G. Van Tendeloo, M. Yoshimura, Structural, textural, and electronic properties of a nanosized mesoporous Zn x Ti 1-x O 2-x solid solution prepared by a supercritical drying route. J. Phys. Chem. B, 109, No.43, p. 20303-20309 (2005).
https://doi.org/10.1021/jp0535341