Semiconductor Physics, Quantum Electronics & Optoelectronics. 2011. V. 14, N 1. P. 031-040.
https://doi.org/10.15407/spqeo14.01.031



References 

1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Zener model description of ferro- magnetism in zinc-blende magnetic semi- conductors. Science 287, p. 1019-1022 (2000).
https://doi.org/10.1126/science.287.5455.1019
 
2. H. Saeki, H. Tabata, and T. Kawai, Magnetic and electric properties of vanadium doped ZnO films. Solid State Communs. 120, p. 439-443 (2001).
https://doi.org/10.1016/S0038-1098(01)00400-8
 
3. S.-J. Han, J.W. Song, C.-H. Yang, S. H. Park, J.-H. Park, Y.H. Jeong, and K.W. Rhie, A key to room- temperature ferromagnetism in Fe-doped ZnO:Cu. Appl. Phys. Lett. 81, p. 4212-4214 (2002).
https://doi.org/10.1063/1.1525885
 
4. K. Ueda, H. Tabata and T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, p. 988-990 (2001).
https://doi.org/10.1063/1.1384478
 
5. Kay Potzger and Shengqlang Zhou, Non-DMS related ferromagnetism in transition metal doped zinc oxide. Phys. status solidi (b), 246, p. 1147- 1167 (2009).
https://doi.org/10.1002/pssb.200844272
 
6. M. Snure, D. Kumar and A. Tiwari, Ferromagnetism in Ni-doped ZnO films: Extrinsic or intrinsic? . Appl. Phys. Lett. 94, p. 012510-3 (2009).
https://doi.org/10.1063/1.3067998
 
7. A. Kaminski and S. Das Sarma, Polaron percolation in diluted magnetic semiconductors . Phys. Rev. Lett. 88, p. 247202-4 (2002).
https://doi.org/10.1103/PhysRevLett.88.247202
 
8. Scott Chambers, Epitaxial growth and properties of doped transition metal and complex oxide films. Adv. Materials 22, p. 219-248 (2010).
https://doi.org/10.1002/adma.200901867
 
9. Xuefeng Wang, J. B. Xu, and Ning Ke, Jiaguo Yu, Juan Wang, Quan Li, and H.C. Ong, R. Zhang, Imperfect oriented attachment: Direct activation of high-temperature ferromagnetism in diluted magnetic semiconductor nanocrystals. Appl. Phys. Lett. 88, p. 223108-3 (2006).
https://doi.org/10.1063/1.2208554
 
10. S. B. Zhang, S.-H. Wei and A. Zunger, Intrinsic n- type versus p-type doping asymmetry and the defect physics of ZnO . Phys. Rev. B 63, p. 075205-7 (2001).
https://doi.org/10.1103/PhysRevB.63.075205
 
11. K.R. Kittilstved, N.S. Norberg and D.R. Gamelin, Chemical manipulation of high-T c ferromagnetism in ZnO diluted magnetic semiconductors . Phys. Rev. Lett. 94, p. 147209-4 (2005).
https://doi.org/10.1103/PhysRevLett.94.147209
 
12. P. Sati, R. Hayn, R. Kuzian, S. Regnier, S. Schafer, A. Stepanov,C. Morhain, C. Deparis, M. Laugt, M. Goiran, Z. Golacki, Magnetic anisotropy of Co 2+ as signature of intrinsic ferromagnetism in ZnO:Co. Phys. Rev. Lett. 96, p. 017203-4 (2006).
https://doi.org/10.1103/PhysRevLett.96.017203
 
13. K.R. Kittilstved, D.A. Schwartz, A.C. Tuan, S.M. Heald, S.A. Chambers, D.R. Gamelin, Direct kinetic correlation of carriers and ferromagnetism in Co 2+ :ZnO . Phys. Rev. Lett. 97, p. 037203-4 (2006).
https://doi.org/10.1103/PhysRevLett.97.037203
 
14. Shinji Kuroda, Nozomi Nishizawa, Koki Takita, Masanori Mitome, Yoshio Bando, Krzysztof Osuch and Tomasz Dietl, Origin and control of high- temperature ferromagnetism in semiconductors . Nature Materials 6, p. 440-449 (2007).
https://doi.org/10.1038/nmat1910
 
15. C. Bundesmann, N. Ashkenov, M. Schuber, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorents and M. Grundmann, Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li . Appl. Phys. Lett. 83, p. 1974-1976 (2003).
https://doi.org/10.1063/1.1609251
 
16. C. Sudakar, P. Kharel, G. Lawes, R. Suryanarayanan, R. Naik and V.M. Naik, Raman spectroscopic studies of oxygen defects in Co-doped ZnO films exhibiting room-temperature ferromagnetism . J. Phys.: Cond. Mat. 19, p. 026212-9 (2007).
https://doi.org/10.1088/0953-8984/19/2/026212
 
17. K. Samanta, P. Bhattacharya, R.S. Katiyar, W. Iwamoto, P.G. Pagliuso and C. Rettori, Raman scattering studies in dilute magnetic semiconductor Zn 1−x Co x O. Phys. Rev. B 73, p. 245213-5 (2006).
https://doi.org/10.1103/PhysRevB.73.245213
 
18. A. Ney, K. Ollefs, S. Ye, T. Kammermeier, V. Ney, T.C. Kaspar, S.A. Chambers, F. Wilhelm, A. Rogalev, Absence of Intrinsic Ferromagnetic Interactions of Isolated and Paired Co dopant Atoms in Zn 1–x Co x O with High Structural Perfection . Phys. Rev. Lett., 100, p. 157201-4 (2008).
https://doi.org/10.1103/PhysRevLett.100.157201
 
19. P. Sati, S. Schafer, C. Morhain, C. Deparis, A. Stepanov, Magnetic properties of single crystalline Zn 1−x Co x O thin films . Superlattices and Microstructures 42, p. 191-196 (2007).
https://doi.org/10.1016/j.spmi.2007.04.053
 
20. A. Ney, T. Kammermeier, K. Ollefs, S. Ye, V. Ney, T.C. Kaspar, S.A. Chambers, F. Wilhelm and A. Rogalev, Anisotropic paramagnetism of Co- doped ZnO epitaxial films . Phys. Rev. B 81, p. 054420-10 (2010). 21. M. Kobayashi, Y. Ishida, J.I. Osafune, A. Fujimori, Y. Takeda, T. Okane, Y. Saitoh, K. Kobayashi, H. Saeki, T. Kawai and H. Tabata, Antiferromagnetic interaction between paramagnetic Co ions in the diluted magnetic semiconductor ZnCoO . Phys. Rev. B 81, p. 075204-7 (2010).
 
22. X.J. Liu, C. Song, F. Zeng, F. Pan, B. He, W.S. Yan, Strain-induced ferromagnetism enhancement in Co:ZnO films. J. Appl. Phys. 103, p. 093911-7 (2008).
https://doi.org/10.1063/1.2919065
 
23. B.Z. Dong, G.J. Fang, J.F. Wang, W.J. Guan, and X.Z. Zhao, Effect of thickness on structural, electrical, and optical properties of ZnO:Al films deposited by pulsed laser depositiong . J. Appl. Phys. 101, p. 033713-7 (2007).
https://doi.org/10.1063/1.2437572
 
24. E. Schlenkera, A. Bakin, B. Postels, A.C. Mofora, M. Kreye, C. Ronningb, S. Sieversc, M, Albrecht, U. Siegner, R. Kling, A. Waag, Magnetic characterization of ZnO doped with vanadium . Superlattices and Microstructures 42, p. 236-241 (2007).
https://doi.org/10.1016/j.spmi.2007.04.043
 
25. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe and P. Jena, Vacancy-induced magnetism in ZnO thin films and nanowires. Phys. Rev. B 77, p. 205411- 205418 (2008).
https://doi.org/10.1103/PhysRevB.77.205411
 
26. A.S. Risbud, N.A. Spaldin, Z.Q. Chen, S. Stemmer and Ram Seshadri, Magnetism in polycrystalline cobalt-substituted zinc oxide. Phys. Rev. B 68, p. 205202-7 (2003).
https://doi.org/10.1103/PhysRevB.68.205202
 
27. EunCheol Lee and K.J. Chang, Ferromagnetic versus antiferromagnetic interaction in Co-doped ZnO. Phys. Rev. B 69, p. 085205-5 (2004).
https://doi.org/10.1103/PhysRevB.69.085205
 
28. J.M.D. Coey, M. Venkatesan and C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides . Nat. Mater. 4, p. 173-179 (2005).
https://doi.org/10.1038/nmat1310
 
29. P. Lommens, P.F. Smet, C. de Mello Donega, A. Meijerink, L. Piraux, S. Michotte, S. Matefi- Tempfli, D. Poelman and Z. Hens, Photo- luminescence properties of Co -doped ZnO nanocrystals 2+ . J. Lumin. 118, p. 245-250 (2006).
https://doi.org/10.1016/j.jlumin.2005.08.020
 
30. V.Yu. Davydov, I.N. Goncharuk, A.N. Smirnov, A.E. Nikolaev, W.V. Lundin, A.S. Usikov, A.A. Klochikhin, J. Aderhold, J. Graul, O. Semchinova and H. Harima, Composition dependence of optical phonon energies and Raman line broadening in hexagonal Al x Ga 1-x N alloys . Phys. Rev. B 65, p. 125203-13 (2002).
https://doi.org/10.1103/PhysRevB.65.125203
 
31. J. Serrano, A.H. Romero, F.J. Manjon, R. Lauck, M. Cardona and A. Rubio, Pressure dependence of the lattice dynamics of ZnO: An ab initio approach // Phys. Rev. B 69, p. 094306-14 (2004).
https://doi.org/10.1103/PhysRevB.69.094306
 
32. P.-M. Chassaing, F. Demangeot, V. Paillard, A. Zwick, N. Combe, C. Pags, M.L. Kahn, A. Maisonnat and B. Chaudret, Surface optical phonons as a probe of organic ligands on ZnO nanoparticles: An investigation using a dielectric continuum model and Raman spectrometry. Phys. Rev. B 77, p. 153306-4 (2008).
https://doi.org/10.1103/PhysRevB.77.153306
 
33. F.A. Fonoberov, A.A. Balandin, Interface and confined optical phonons in wurtzite nanocrystals. Phys. Rev. B 70, p. 233205-4 (2004).
https://doi.org/10.1103/PhysRevB.70.233205
 
34. S. Hayashi and H. Kanamori, Raman scattering from the surface phonon mode in GaP microcrystals. Phys. Rev. B 26, p. 7079-4 (1982).
https://doi.org/10.1103/PhysRevB.26.7079
 
35. Y. Liu and J.L. MacManus-Driscoll, Impurity control in Co-doped ZnO films through modifying cooling atmosphere . Appl. Phys. Lett. 94, p. 022503-3 (2009).
https://doi.org/10.1063/1.3068753
 
36. N. Hasuike, K. Nishio, H.Katoh, A. Suzuki, T. Isshiki, K.Kisoda, H. Harima, Structural and electronic properties of ZnO polycrystals doped with Co. J. Phys.: Condens. Matter 21, p. 064215- 5 (2009).
https://doi.org/10.1088/0953-8984/21/6/064215
 
37. Klaus Ellmer, Andreas Klein, Bernd Rech, Transparent Conductive Zinc Oxide. Basic and Applications in Thin Film Solar Cells. Springer- Verlag, Berlin, p. 443 (2008).
 
38. G. Irmer, M. Wenzel and J. Monecke, Light scattering by a multicomponent plasma coupled with longitudinal-optical phonons: Raman spectra of p-type GaAs:Zn. Phys. Rev. B 56, p. 9524-9538 (1997).
https://doi.org/10.1103/PhysRevB.56.9524
 
39. B.H. Bairamov, A. Heinrich, G. Irmer, V.V. To- porov and E. Ziegler, Raman study of the phonon halfwidths and the phonon-plasmon coupling in ZnO . Phys. status solidi (b) 119, p. 227-234 (1983).
https://doi.org/10.1002/pssb.2221190126
 
40. T. Jungwirth, Jairo Sinova, J. Masek, J. Kucera, A.H. MacDonald, Theory of ferromagnetic (III,Mn)V semiconductors . Rev. Mod. Phys. 78, p. 809-864 (2006).
https://doi.org/10.1103/RevModPhys.78.809
 
41. V. Bryksa, W. Nolting, Disordered Kondo-lattice model: Extension of coherent potential approximation . Phys. Rev. B 78, p. 064417-9 (2008).
https://doi.org/10.1103/PhysRevB.78.064417