1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D.
Ferrand, Zener model description of ferro- magnetism in zinc-blende
magnetic semi- conductors. Science 287, p. 1019-1022 (2000). https://doi.org/10.1126/science.287.5455.1019
2.
H. Saeki, H. Tabata, and T. Kawai, Magnetic and electric properties of
vanadium doped ZnO films. Solid State Communs. 120, p. 439-443 (2001). https://doi.org/10.1016/S0038-1098(01)00400-8
3.
S.-J. Han, J.W. Song, C.-H. Yang, S. H. Park, J.-H. Park, Y.H. Jeong,
and K.W. Rhie, A key to room- temperature ferromagnetism in Fe-doped
ZnO:Cu. Appl. Phys. Lett. 81, p. 4212-4214 (2002). https://doi.org/10.1063/1.1525885
4.
K. Ueda, H. Tabata and T. Kawai, Magnetic and electric properties of
transition-metal-doped ZnO films. Appl. Phys. Lett. 79, p. 988-990
(2001). https://doi.org/10.1063/1.1384478
5.
Kay Potzger and Shengqlang Zhou, Non-DMS related ferromagnetism in
transition metal doped zinc oxide. Phys. status solidi (b), 246, p.
1147- 1167 (2009). https://doi.org/10.1002/pssb.200844272
6.
M. Snure, D. Kumar and A. Tiwari, Ferromagnetism in Ni-doped ZnO films:
Extrinsic or intrinsic? . Appl. Phys. Lett. 94, p. 012510-3 (2009). https://doi.org/10.1063/1.3067998
8.
Scott Chambers, Epitaxial growth and properties of doped transition
metal and complex oxide films. Adv. Materials 22, p. 219-248 (2010). https://doi.org/10.1002/adma.200901867
9.
Xuefeng Wang, J. B. Xu, and Ning Ke, Jiaguo Yu, Juan Wang, Quan Li, and
H.C. Ong, R. Zhang, Imperfect oriented attachment: Direct activation of
high-temperature ferromagnetism in diluted magnetic semiconductor
nanocrystals. Appl. Phys. Lett. 88, p. 223108-3 (2006). https://doi.org/10.1063/1.2208554
10.
S. B. Zhang, S.-H. Wei and A. Zunger, Intrinsic n- type versus p-type
doping asymmetry and the defect physics of ZnO . Phys. Rev. B 63, p.
075205-7 (2001). https://doi.org/10.1103/PhysRevB.63.075205
11.
K.R. Kittilstved, N.S. Norberg and D.R. Gamelin, Chemical manipulation
of high-T c ferromagnetism in ZnO diluted magnetic semiconductors .
Phys. Rev. Lett. 94, p. 147209-4 (2005). https://doi.org/10.1103/PhysRevLett.94.147209
12.
P. Sati, R. Hayn, R. Kuzian, S. Regnier, S. Schafer, A. Stepanov,C.
Morhain, C. Deparis, M. Laugt, M. Goiran, Z. Golacki, Magnetic
anisotropy of Co 2+ as signature of intrinsic ferromagnetism in ZnO:Co.
Phys. Rev. Lett. 96, p. 017203-4 (2006). https://doi.org/10.1103/PhysRevLett.96.017203
13.
K.R. Kittilstved, D.A. Schwartz, A.C. Tuan, S.M. Heald, S.A. Chambers,
D.R. Gamelin, Direct kinetic correlation of carriers and ferromagnetism
in Co 2+ :ZnO . Phys. Rev. Lett. 97, p. 037203-4 (2006). https://doi.org/10.1103/PhysRevLett.97.037203
14.
Shinji Kuroda, Nozomi Nishizawa, Koki Takita, Masanori Mitome, Yoshio
Bando, Krzysztof Osuch and Tomasz Dietl, Origin and control of high-
temperature ferromagnetism in semiconductors . Nature Materials 6, p.
440-449 (2007). https://doi.org/10.1038/nmat1910
15.
C. Bundesmann, N. Ashkenov, M. Schuber, D. Spemann, T. Butz, E.M.
Kaidashev, M. Lorents and M. Grundmann, Raman scattering in ZnO thin
films doped with Fe, Sb, Al, Ga, and Li . Appl. Phys. Lett. 83, p.
1974-1976 (2003). https://doi.org/10.1063/1.1609251
16.
C. Sudakar, P. Kharel, G. Lawes, R. Suryanarayanan, R. Naik and V.M.
Naik, Raman spectroscopic studies of oxygen defects in Co-doped ZnO
films exhibiting room-temperature ferromagnetism . J. Phys.: Cond. Mat.
19, p. 026212-9 (2007). https://doi.org/10.1088/0953-8984/19/2/026212
17.
K. Samanta, P. Bhattacharya, R.S. Katiyar, W. Iwamoto, P.G. Pagliuso
and C. Rettori, Raman scattering studies in dilute magnetic
semiconductor Zn 1−x Co x O. Phys. Rev. B 73, p. 245213-5 (2006). https://doi.org/10.1103/PhysRevB.73.245213
18.
A. Ney, K. Ollefs, S. Ye, T. Kammermeier, V. Ney, T.C. Kaspar, S.A.
Chambers, F. Wilhelm, A. Rogalev, Absence of Intrinsic Ferromagnetic
Interactions of Isolated and Paired Co dopant Atoms in Zn 1–x Co x O
with High Structural Perfection . Phys. Rev. Lett., 100, p. 157201-4
(2008). https://doi.org/10.1103/PhysRevLett.100.157201
19.
P. Sati, S. Schafer, C. Morhain, C. Deparis, A. Stepanov, Magnetic
properties of single crystalline Zn 1−x Co x O thin films .
Superlattices and Microstructures 42, p. 191-196 (2007). https://doi.org/10.1016/j.spmi.2007.04.053
20.
A. Ney, T. Kammermeier, K. Ollefs, S. Ye, V. Ney, T.C. Kaspar, S.A.
Chambers, F. Wilhelm and A. Rogalev, Anisotropic paramagnetism of Co-
doped ZnO epitaxial films . Phys. Rev. B 81, p. 054420-10 (2010). 21. M.
Kobayashi, Y. Ishida, J.I. Osafune, A. Fujimori, Y. Takeda, T. Okane,
Y. Saitoh, K. Kobayashi, H. Saeki, T. Kawai and H. Tabata,
Antiferromagnetic interaction between paramagnetic Co ions in the
diluted magnetic semiconductor ZnCoO . Phys. Rev. B 81, p. 075204-7
(2010).
22. X.J. Liu, C. Song, F. Zeng, F. Pan, B. He,
W.S. Yan, Strain-induced ferromagnetism enhancement in Co:ZnO films. J.
Appl. Phys. 103, p. 093911-7 (2008). https://doi.org/10.1063/1.2919065
23.
B.Z. Dong, G.J. Fang, J.F. Wang, W.J. Guan, and X.Z. Zhao, Effect of
thickness on structural, electrical, and optical properties of ZnO:Al
films deposited by pulsed laser depositiong . J. Appl. Phys. 101, p.
033713-7 (2007). https://doi.org/10.1063/1.2437572
24.
E. Schlenkera, A. Bakin, B. Postels, A.C. Mofora, M. Kreye, C.
Ronningb, S. Sieversc, M, Albrecht, U. Siegner, R. Kling, A. Waag,
Magnetic characterization of ZnO doped with vanadium . Superlattices
and Microstructures 42, p. 236-241 (2007). https://doi.org/10.1016/j.spmi.2007.04.043
25.
Q. Wang, Q. Sun, G. Chen, Y. Kawazoe and P. Jena, Vacancy-induced
magnetism in ZnO thin films and nanowires. Phys. Rev. B 77, p. 205411-
205418 (2008). https://doi.org/10.1103/PhysRevB.77.205411
26.
A.S. Risbud, N.A. Spaldin, Z.Q. Chen, S. Stemmer and Ram Seshadri,
Magnetism in polycrystalline cobalt-substituted zinc oxide. Phys. Rev.
B 68, p. 205202-7 (2003). https://doi.org/10.1103/PhysRevB.68.205202
27.
EunCheol Lee and K.J. Chang, Ferromagnetic versus antiferromagnetic
interaction in Co-doped ZnO. Phys. Rev. B 69, p. 085205-5 (2004). https://doi.org/10.1103/PhysRevB.69.085205
28.
J.M.D. Coey, M. Venkatesan and C.B. Fitzgerald, Donor impurity band
exchange in dilute ferromagnetic oxides . Nat. Mater. 4, p. 173-179
(2005). https://doi.org/10.1038/nmat1310
29.
P. Lommens, P.F. Smet, C. de Mello Donega, A. Meijerink, L. Piraux, S.
Michotte, S. Matefi- Tempfli, D. Poelman and Z. Hens, Photo-
luminescence properties of Co -doped ZnO nanocrystals 2+ . J. Lumin.
118, p. 245-250 (2006). https://doi.org/10.1016/j.jlumin.2005.08.020
30.
V.Yu. Davydov, I.N. Goncharuk, A.N. Smirnov, A.E. Nikolaev, W.V.
Lundin, A.S. Usikov, A.A. Klochikhin, J. Aderhold, J. Graul, O.
Semchinova and H. Harima, Composition dependence of optical phonon
energies and Raman line broadening in hexagonal Al x Ga 1-x N alloys .
Phys. Rev. B 65, p. 125203-13 (2002). https://doi.org/10.1103/PhysRevB.65.125203
31.
J. Serrano, A.H. Romero, F.J. Manjon, R. Lauck, M. Cardona and A.
Rubio, Pressure dependence of the lattice dynamics of ZnO: An ab initio
approach // Phys. Rev. B 69, p. 094306-14 (2004). https://doi.org/10.1103/PhysRevB.69.094306
32.
P.-M. Chassaing, F. Demangeot, V. Paillard, A. Zwick, N. Combe, C.
Pags, M.L. Kahn, A. Maisonnat and B. Chaudret, Surface optical phonons
as a probe of organic ligands on ZnO nanoparticles: An investigation
using a dielectric continuum model and Raman spectrometry. Phys. Rev. B
77, p. 153306-4 (2008). https://doi.org/10.1103/PhysRevB.77.153306
33.
F.A. Fonoberov, A.A. Balandin, Interface and confined optical phonons in
wurtzite nanocrystals. Phys. Rev. B 70, p. 233205-4 (2004). https://doi.org/10.1103/PhysRevB.70.233205
34.
S. Hayashi and H. Kanamori, Raman scattering from the surface phonon
mode in GaP microcrystals. Phys. Rev. B 26, p. 7079-4 (1982). https://doi.org/10.1103/PhysRevB.26.7079
35.
Y. Liu and J.L. MacManus-Driscoll, Impurity control in Co-doped ZnO
films through modifying cooling atmosphere . Appl. Phys. Lett. 94, p.
022503-3 (2009). https://doi.org/10.1063/1.3068753
36.
N. Hasuike, K. Nishio, H.Katoh, A. Suzuki, T. Isshiki, K.Kisoda, H.
Harima, Structural and electronic properties of ZnO polycrystals doped
with Co. J. Phys.: Condens. Matter 21, p. 064215- 5 (2009). https://doi.org/10.1088/0953-8984/21/6/064215
37.
Klaus Ellmer, Andreas Klein, Bernd Rech, Transparent Conductive Zinc
Oxide. Basic and Applications in Thin Film Solar Cells. Springer-
Verlag, Berlin, p. 443 (2008).
38. G. Irmer, M. Wenzel and
J. Monecke, Light scattering by a multicomponent plasma coupled with
longitudinal-optical phonons: Raman spectra of p-type GaAs:Zn. Phys.
Rev. B 56, p. 9524-9538 (1997). https://doi.org/10.1103/PhysRevB.56.9524
39.
B.H. Bairamov, A. Heinrich, G. Irmer, V.V. To- porov and E. Ziegler,
Raman study of the phonon halfwidths and the phonon-plasmon coupling in
ZnO . Phys. status solidi (b) 119, p. 227-234 (1983). https://doi.org/10.1002/pssb.2221190126
40.
T. Jungwirth, Jairo Sinova, J. Masek, J. Kucera, A.H. MacDonald, Theory
of ferromagnetic (III,Mn)V semiconductors . Rev. Mod. Phys. 78, p.
809-864 (2006). https://doi.org/10.1103/RevModPhys.78.809
41.
V. Bryksa, W. Nolting, Disordered Kondo-lattice model: Extension of
coherent potential approximation . Phys. Rev. B 78, p. 064417-9 (2008). https://doi.org/10.1103/PhysRevB.78.064417