3. A.B. Glot, A.P. Zlobin, The non-ohmic conduction of tin dioxide based ceramics . Inorg. Mater. 25 (2), p. 274-276 (1989).
5.
A.B. Glot, Non-ohmic conduction in oxide ceramics: tin dioxide and zinc
oxide varistors, in: Ceramic Materials Research Trends, Ed. P.B. Lin,
p. 227-273. Nova Science Publishers, Inc., New York, 2007.
6.
P.R. Bueno, J.A. Varela, E. Longo, SnO 2, ZnO and related
polycrystalline compound semiconductors: An overview and review on the
voltage-dependent resistance (non-ohmic) feature . J. Eur. Ceram. Soc.
28(3), p. 505-529 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.06.011
7.
S.A. Pianaro, P.R. Bueno, E. Longo, J.A. Varela, A new SnO 2 -based
varistor system . J. Mater. Sci. Lett. 14(10), p. 692-694 (1995). https://doi.org/10.1007/BF00253373
8.
P.N. Santosh, H.S. Potdar, S.K. Date, Chemical synthesis of a new tin
dioxide based (SnO 2 : Co, Al, Nb) varistor. J. Mater. Res. 12, p.
326-328 (1997). https://doi.org/10.1557/JMR.1997.0046
9.
R. Parra, J.E. Rodriguez-Paez, J.A. Varela, M.S. Castro, The influence
of the synthesis route on the final properties of SnO 2 -based
varistors . Ceram. Intern. 34, p. 563-571 (2008). https://doi.org/10.1016/j.ceramint.2006.12.003
10.
R. Metz, D. Koumeir, J. Morel, J. Pansiot, M. Houabes, M. Hassanzadeh,
Electrical barriers formation at the grain boundaries of Co-doped SnO 2
varistor ceramics . J. Eur. Ceram. Soc. 28, p. 829-835 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.05.024
11.
I. Skuratovsky, A. Glot, E. Di Bartolomeo, E. Traversa, R. Polini, The
effect of humidity on the voltage-current characteristic of SnO 2 based
ceramic varistor . J. Eur. Ceram. Soc. 24 (9), p. 2597-2604 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.09.008
13.
A.V. Gaponov, A.B. Glot, A.I. Ivon, A.M. Chack, G. Jimenez-Santana,
Varistor and humidity- sensitive properties of SnO 2 -Co 3 O 4 -Nb 2 O
5 -Cr 2 O 3 ceramics with V 2 O 5 addition. Mater. Sci. Eng. B. 145
(1-3), p. 76-84 (2007). https://doi.org/10.1016/j.mseb.2007.10.003
14.
A.B. Glot, A.P. Sandoval-Garcia, A.V. Gaponov, R. Bulpett, B.J. Jones,
G. Jimenez-Santana, Electro- nic properties of SnO 2 -based ceramics
with double function of varistor and humidity sensor . Adv. in Tech.
Mat. and Mat. Proc. J. 10(1), p. 21-32 (2008).
15. A.V.
Gaponov, A.B. Glot, Electrical properties of SnO 2 based varistor
ceramics with CuO addition. J. Mater. Sci.: Mater. Electron. 21(4), p.
331-337 (2010). https://doi.org/10.1007/s10854-009-9916-1
17. A.B. Glot, A model of non-Ohmic conduction in ZnO varistors . J. Mater. Sci.: Mater. Electron. 17(9), p. 755-765 (2006). https://doi.org/10.1007/s10854-006-0019-y
18.
I. Skuratovsky, A. Glot, E. Traversa, Modelling of the humidity effect
on the barrier height in SnO 2 varistors. Mater. Sci. Eng. B 128 (1-3),
p. 130-137 (2006). https://doi.org/10.1016/j.mseb.2005.11.039
19.
Z.M. Jarzebsky, J.P. Marton, Physical properties of SnO 2 materials:
III. Optical properties . J. Electrochem. Soc. 123(10), p. 333-346
(1976). https://doi.org/10.1149/1.2132647
21.
A.B. Glot, S.V. Firsin, A.Ya. Yakunin, Fluorescence of ceramics from
zinc oxide in an electric field . Izvestiya Vysshikh Uchebnykh
Zavedenii. Fizika 24 (5), p. 101-102 (1981), in Russian.
22.
G.E. Pike, S.R. Kurtz, P.L. Gourley, H.R. Philipp, L.M. Levinson,
Electroluminescence in ZnO varistors: Evidence for hole contributions
to the breakdown mechanism . J. Appl. Phys. 57 (12), p. 5512-5518
(1985). https://doi.org/10.1063/1.334829
23.
G.E. Pike, Electronic properties of ZnO varistors: a new model, in:
Grain Boundaries in Semiconductors, Eds. G.E. Pike, C.H. Seager, H.J.
Leamy, vol. 5, pp. 369-379. Elsevier, 1982.