Semiconductor Physics, Quantum Electronics & Optoelectronics. 2011. V. 14, N 1. P. 071-076.
https://doi.org/10.15407/spqeo14.01.071



References 

1. M. Matsuoka, Nonohmic properties of zinc oxide ceramics . Jpn. J. Appl. Phys. 10(6), p. 736-746 (1971).
https://doi.org/10.1143/JJAP.10.736
 
2. T.K. Gupta, Application of zinc oxide varistors. J. Amer. Ceram. Soc. 73(7), p. 1817-1840 (1990).
https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
 
3. A.B. Glot, A.P. Zlobin, The non-ohmic conduction of tin dioxide based ceramics . Inorg. Mater. 25 (2), p. 274-276 (1989).
 
5. A.B. Glot, Non-ohmic conduction in oxide ceramics: tin dioxide and zinc oxide varistors, in: Ceramic Materials Research Trends, Ed. P.B. Lin, p. 227-273. Nova Science Publishers, Inc., New York, 2007.
 
6. P.R. Bueno, J.A. Varela, E. Longo, SnO 2, ZnO and related polycrystalline compound semiconductors: An overview and review on the voltage-dependent resistance (non-ohmic) feature . J. Eur. Ceram. Soc. 28(3), p. 505-529 (2008).
https://doi.org/10.1016/j.jeurceramsoc.2007.06.011
 
7. S.A. Pianaro, P.R. Bueno, E. Longo, J.A. Varela, A new SnO 2 -based varistor system . J. Mater. Sci. Lett. 14(10), p. 692-694 (1995).
https://doi.org/10.1007/BF00253373
 
8. P.N. Santosh, H.S. Potdar, S.K. Date, Chemical synthesis of a new tin dioxide based (SnO 2 : Co, Al, Nb) varistor. J. Mater. Res. 12, p. 326-328 (1997).
https://doi.org/10.1557/JMR.1997.0046
 
9. R. Parra, J.E. Rodriguez-Paez, J.A. Varela, M.S. Castro, The influence of the synthesis route on the final properties of SnO 2 -based varistors . Ceram. Intern. 34, p. 563-571 (2008).
https://doi.org/10.1016/j.ceramint.2006.12.003
 
10. R. Metz, D. Koumeir, J. Morel, J. Pansiot, M. Houabes, M. Hassanzadeh, Electrical barriers formation at the grain boundaries of Co-doped SnO 2 varistor ceramics . J. Eur. Ceram. Soc. 28, p. 829-835 (2008).
https://doi.org/10.1016/j.jeurceramsoc.2007.05.024
 
11. I. Skuratovsky, A. Glot, E. Di Bartolomeo, E. Traversa, R. Polini, The effect of humidity on the voltage-current characteristic of SnO 2 based ceramic varistor . J. Eur. Ceram. Soc. 24 (9), p. 2597-2604 (2004).
https://doi.org/10.1016/j.jeurceramsoc.2003.09.008
 
12. A.B. Glot, I.A. Skuratovsky, Non-Ohmic conduction in tin dioxide based varistor ceramics. Mater. Chem. Phys. 99 (2-3), p. 487-493 (2006).
https://doi.org/10.1016/j.matchemphys.2005.11.028
 
13. A.V. Gaponov, A.B. Glot, A.I. Ivon, A.M. Chack, G. Jimenez-Santana, Varistor and humidity- sensitive properties of SnO 2 -Co 3 O 4 -Nb 2 O 5 -Cr 2 O 3 ceramics with V 2 O 5 addition. Mater. Sci. Eng. B. 145 (1-3), p. 76-84 (2007).
https://doi.org/10.1016/j.mseb.2007.10.003
 
14. A.B. Glot, A.P. Sandoval-Garcia, A.V. Gaponov, R. Bulpett, B.J. Jones, G. Jimenez-Santana, Electro- nic properties of SnO 2 -based ceramics with double function of varistor and humidity sensor . Adv. in Tech. Mat. and Mat. Proc. J. 10(1), p. 21-32 (2008).
 
15. A.V. Gaponov, A.B. Glot, Electrical properties of SnO 2 based varistor ceramics with CuO addition. J. Mater. Sci.: Mater. Electron. 21(4), p. 331-337 (2010).
https://doi.org/10.1007/s10854-009-9916-1
 
16. A.B. Glot, A simple approach to oxide varistor materials . J. Mater. Sci. 41(17), p. 5709-5711 (2006).
https://doi.org/10.1007/s10853-006-0076-x
 
17. A.B. Glot, A model of non-Ohmic conduction in ZnO varistors . J. Mater. Sci.: Mater. Electron. 17(9), p. 755-765 (2006).
https://doi.org/10.1007/s10854-006-0019-y
 
18. I. Skuratovsky, A. Glot, E. Traversa, Modelling of the humidity effect on the barrier height in SnO 2 varistors. Mater. Sci. Eng. B 128 (1-3), p. 130-137 (2006).
https://doi.org/10.1016/j.mseb.2005.11.039
 
19. Z.M. Jarzebsky, J.P. Marton, Physical properties of SnO 2 materials: III. Optical properties . J. Electrochem. Soc. 123(10), p. 333-346 (1976).
https://doi.org/10.1149/1.2132647
 
20. W.E. Taylor, N.H. Odell, H.Y. Fan, Grain boundary barriers in germanium. Phys. Rev. B 88, p. 867-875 (1952).
https://doi.org/10.1103/PhysRev.88.867
 
21. A.B. Glot, S.V. Firsin, A.Ya. Yakunin, Fluorescence of ceramics from zinc oxide in an electric field . Izvestiya Vysshikh Uchebnykh Zavedenii. Fizika 24 (5), p. 101-102 (1981), in Russian.
 
22. G.E. Pike, S.R. Kurtz, P.L. Gourley, H.R. Philipp, L.M. Levinson, Electroluminescence in ZnO varistors: Evidence for hole contributions to the breakdown mechanism . J. Appl. Phys. 57 (12), p. 5512-5518 (1985).
https://doi.org/10.1063/1.334829
 
23. G.E. Pike, Electronic properties of ZnO varistors: a new model, in: Grain Boundaries in Semiconductors, Eds. G.E. Pike, C.H. Seager, H.J. Leamy, vol. 5, pp. 369-379. Elsevier, 1982.
 
24. A.B. Glot, A.V. Gaponov, A.P. Sandoval-Garcia, Electrical conduction in SnO 2 varistors. Phys. B: Condensed Matter. 405, p. 705-711 (2010).
https://doi.org/10.1016/j.physb.2009.09.091