Semiconductor Physics, Quantum Electronics & Optoelectronics. 2011. V. 14, N 1. P. 114-121.
https://doi.org/10.15407/spqeo14.01.114



References 

1. C.R. Yonzon, E. Jeoung, S. Zou, G.C. Schatz, M. Mrksich, and R. P. Van Duyne, A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer . J. Am. Chem. Soc. 126(39), p. 12669-12676 (2004).
https://doi.org/10.1021/ja047118q
 
2. A.J. Haes and R.P. Van Duyne, A unified view of propagating and localized surface plasmon resonance biosensors . Anal. Bioanal. Chem. 379(7–8), p. 920-930 (2004).
https://doi.org/10.1007/s00216-004-2708-9
 
3. P. Englebienne, A. Van Hoonacker, M. Verhas, and N.G. Khlebtsov, Advances in high-throughput screening: biomolecular interaction monitoring in real-time with colloidal metal nanoparticles . Comb. Chem. High Throughput Screening 6(8), p. 777-787 (2003).
https://doi.org/10.2174/138620703771826955
 
4. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, and R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7(6), p. 442- 453 (2008).
https://doi.org/10.1038/nmat2162
 
5. E. Hutter and J.H. Fendler, Exploitation of localized surface plasmon resonance. Adv. Mater. 16(19), p. 1685-1706 (2004).
https://doi.org/10.1002/adma.200400271
 
6. S. Lal, S. Link, and N.J. Halas, Nano-optics from sensing to waveguiding . Nat. Photonics 1(11), p. 641-648 (2007).
https://doi.org/10.1038/nphoton.2007.223
 
7. K. Aslan, J.R. Lakowicz, and C.D. Geddes, Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr. Opin. Chem. Biol. 9(5), p. 538-544 (2005).
https://doi.org/10.1016/j.cbpa.2005.08.021
 
8. B. Sepúlveda, P.C. Angelomé, L.M. Lechuga, and L.M. Liz-Marzán, LSPR-based nanobiosensors . Nano Today 4(3), p. 244-251 (2009).
https://doi.org/10.1016/j.nantod.2009.04.001
 
9. N. Nath and A. Chilkoti, A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem. 74(3), p. 504-509 (2002).
https://doi.org/10.1021/ac015657x
 
10. A.J. Haes and R.P. Van Duyne, A highly sensitive and selective surface-enhanced nanobiosensor, in Molecularly Imprinted Materials – Sensors and Other Devices, Mater. Res. Soc. Symp. Proc. 723, p. O3.1.1-O3.1.6, 2002.
 
11. N.G. Khlebtsov, Determination of size and concentration of gold nanoparticles from extinction spectra. Anal. Chem. 80(17), p. 6620-6625 (2008).
https://doi.org/10.1021/ac800834n
 
12. K.-S. Lee and M.A. El-Sayed, Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 110(39), p. 19220- 19225 (2006).
https://doi.org/10.1021/jp062536y
 
13. A.J. Haes, S. Zou, G.C. Schatz, and R.P. Van Duyne, A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 108(1), p. 109-116 (2004).
https://doi.org/10.1021/jp0361327
 
14. A.J. Haes, S. Zou, G.C. Schatz, and R.P. Van Duyne, Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 108(22), p. 6961-6968 (2004).
https://doi.org/10.1021/jp036261n
 
15. X. Liu, M. Atwater, J. Wang, and Q. Huo, Extinction coefficient of gold nanoparticles with different sizes and different capping ligands . Colloids Surf., B 58(1), p. 3-7 (2007).
https://doi.org/10.1016/j.colsurfb.2006.08.005
 
16. M.D. Malinsky, K.L. Kelly, G.C. Schatz, and R.P. Van Duyne, Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers . J. Am. Chem. Soc. 123(7), p. 1471- 1482 (2001).
https://doi.org/10.1021/ja003312a
 
17. J.J. Mock, D.R. Smith, and S. Schultz, Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 3(4), p. 485-491 (2003).
https://doi.org/10.1021/nl0340475
 
18. W.A. Murray, B. Auguie, and W.L. Barnes, Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment. J. Phys. Chem. C 113(13), p. 5120- 5125 (2009).
https://doi.org/10.1021/jp810322q
 
19. M.M. Miller and A.A. Lazarides, Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment . J. Phys. Chem. B 109(46), p. 21556-21565 (2005).
https://doi.org/10.1021/jp054227y
 
20. W.P. Hall, J.N. Anker, Y. Lin, J. Modica, M. Mrksich, and R.P. Van Duyne, A Calcium- Modulated Plasmonic Switch. J. Am. Chem. Soc. 130(18), p. 5836-5837 (2008).
https://doi.org/10.1021/ja7109037
 
21. Y. Wang, J. Deng, J. Di, and Y. Tu, Electrodeposition of large size gold nanoparticles on indium tin oxide glass and application as refractive index sensor . Electrochem. Comm. 11(5), p. 1034-1037 (2009).
https://doi.org/10.1016/j.elecom.2009.03.005
 
22. X. Li, L. Jiang, Q. Zhan, J. Qian, and S. He, Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing . Colloids Surf., A 332(2-3), p. 172-179 (2009). 23. C.R. Yonzon, D.A. Stuart, X. Zhang, A.D. McFarland, C.L. Haynes, and R.P. Van Duyne, Towards advanced chemical and biological nanosensors – An overview . Talanta 67(3), p. 438-448 (2005).
 
24. Y.-Q. Chen and C.-J. Lu, Surface modification on silver nanoparticles for enhancing vapor selectivity of localized surface plasmon resonance sensors . Sens. Actuators, B 135(2), p. 492-498 (2009).
https://doi.org/10.1016/j.snb.2008.09.030
 
25. C.-S. Cheng, Y.-Q. Chen, and C.-J. Lu, Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer . Talanta 73(2), p. 358-365 (2007).
https://doi.org/10.1016/j.talanta.2007.03.058
 
26. V. Chegel, B. Lucas, J. Guo, A. Lopatynskyi, O. Lopatynska, and L. Poperenko, Detection of biomolecules using optoelectronic biosensor based on localized surface plasmon resonance. Nanoimprint lithography approach . Semicond. Phys. Quantum Electron. Optoelectron. 12(1), p. 91-97 (2009).
 
27. Y. Zhou, H. Xu, A.B. Dahlin, J. Vallkil, C.A.K. Borrebaeck, C. Wingren, B. Liedberg, and F. Höök, Quantitative interpretation of gold nanoparticle- based bioassays designed for detection of immunocomplex formation . Biointerphases 2(1), p. 6-15 (2007).
https://doi.org/10.1116/1.2700235
 
28. K.-J. Chen and C.-J. Lu, A vapor sensor array using multiple localized surface plasmon resonance bands in a single UV–vis spectrum. Talanta 81(4- 5), p. 1670-1675 (2010).
 
29. D.W. Lynch and W.R. Hunter, Comments on the optical constants of metals and an introduction to the data for several metals, in Handbook of optical constant of solids, Vol. 1, Ed. E.D. Palik, p. 275- 368, Academic Press, San Diego, CA, 1998.
https://doi.org/10.1016/B978-0-08-055630-7.50018-3
 
30. P.B. Johnson and R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), p. 4370- 4379 (1972).
https://doi.org/10.1103/PhysRevB.6.4370
 
31. L.I. Berger, Fermi energy and related properties of metals, in Handbook of chemistry and physics, 84th ed., Ed. R.D. Lide, p. 12-232–12-233, CRC Press, Boca Raton, FL, 2004.
 
32. A.I. Gusev and A.A. Rempel, Nanocrystalline Materials, Nauka, Moscow, Russian Federation, 2001 (in Russian).
 
33. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer Series in Materials Science, vol. 25), Springer, Berlin, Germany, 1995.
 
34. N.L. Dmitruk, A.V. Goncharenko, and E.F. Venger, Optics of Small Particles and Composite Media, Naukova dumka, Kyiv, Ukraine, 2009.
 
35. S.L. Westcott, J.B. Jackson, C. Radloff, and N.J. Halas, Relative contributions to the plasmon line shape of metal nanoshells . Phys. Rev. B 66(15), p. 155431-1–155431-5 (2002). 36. M. Fox, Optical properties of solids, Oxford University Press, New York, NY, 2001.
 
37. R.A. Paquin, Properties of metals, in Handbook of optics, Vol. 2 – Devices, Measurements, and Properties, 2nd ed., Ed. M. Bass, p. 35.1-35.78, McGraw-Hill, New York, NY, 1995.
 
38. H. Tokuhisa, M. Zhao, L.A. Baker, V.T. Phan, D.L. Dermody, M.E. Garcia, R.F. Peez, R.M. Crooks, and T.M. Mayer, Preparation and characterization of dendrimer monolayers and dendrimer−alkanethiol mixed monolayers adsorbed to gold. J. Am. Chem. Soc. 120(18), p. 4492-4501 (1998).
https://doi.org/10.1021/ja9742904
 
39. M. Weisser, G. Tovar, S. Mittler-Neher, W. Knoll, F. Brosinger, H. Freimuth, M. Lacher, and W. Ehrfeld, Specific bio-recognition reactions observed with an integrated Mach–Zehnder interferometer . Biosens. Bioelectron. 14(4), p. 405-411 (1999).
https://doi.org/10.1016/S0956-5663(98)00124-9
 
40. N.G. Khlebtsov, V.A. Bogatyrev, B.N. Khlebtsov, L.A. Dykman, and P. Englebienne, A multilayer model for gold nanoparticle bioconjugates: application to study of gelatin and human IgG adsorption using extinction and light scattering spectra and the dynamic light scattering method. Colloid J. 65(5), p. 622-635 (2003).
https://doi.org/10.1023/A:1026140310601
 
41. C.F. Bohren and D.R. Huffman, Absorption and scattering of light by small particles, Wiley- Interscience, New York, NY, 1983.