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Abstract. The quantization scheme for the electromagnetic field in planar absorbing 
heterostructures has been developed. The scheme is based on the field expansion over a 
complete set of orthonormal modes. We used two types of the field modes. The first one 
is defined as the field created by a plane wave incident at the surface of the structure 
from the non-absorbing half space. The second type of modes corresponds to the field 
generated by electric current fluctuations in the absorbing media. To normalize the field 
modes, the following conditions were used: 1) the time-averaged Poynting vector 
attributed to the incident wave equals the density of energy flow of elementary quanta of 
the field energy; 2) for the given frequency and polarization, the total time-averaged 
Poynting vector equals to zero. The theory is applied to calculate the rate of spontaneous 
transitions between electron subbands in a quantum well placed near the absorbing layer 
that can support the surface phonon or plasmon polaritons.  
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1. Introduction  

In the conventional quantization scheme, the 
electromagnetic field is expressed in terms of a set of 
orthonormal modes; each mode is quantized as a 
harmonic oscillator. For free space, the plane-wave 
modes that are defined using the periodical boundary 
conditions in a fiction quantization box are usually used. 
The field quantization in the presence of bounded non-
absorbing media has been carried out for plane-parallel 
layers [1, 2] and semi-infinite dielectrics [3, 4]. For such 
systems, the eigenmodes of Maxwell’s equations with 
the appropriate boundary conditions are used. 

The methods of quantization developed for non-
absorbing media fail when losses are present [5]. The 
quantization problem in absorbing media has been 
considered by many authors, and many different 
schemes have been proposed (see, e. g., [6] for a 
review). In this paper, we have modified the approach 
[7-11] based on the introduction of noise currents into 
the Maxwell equations for the macroscopic 
electromagnetic field. In the works [7-11], the current 
correlation function has been postulated but not derived. 
This function is taken in the form that ensures 

preservation of the known canonical field commutation 
relations in the presence of absorption. Here, for the 
electromagnetic field in the presence of absorbing and 
dispersing planar structures, we develop the quantization 
scheme based on the mode decomposition. In order to 
calculate the field generated by some absorbing medium, 
the oscillator model is employed. The modes are 
normalized with respect to the electromagnetic energy 
flow. It is assumed that the total normal electromagnetic 
energy flow through an arbitrary plane parallel to the 
interfaces is absent. The theory is applied to calculate the 
rate of spontaneous photon emission under transitions 
between electron subbands in a quantum well placed in 
the near field of an absorbing layer that supports the 
surface-phonon polaritons or the surface-plasmon 
polaritons.  

2. Photons in the presence of bounded non-adsorbing 
dielectrics  

Let us first consider a structure consisting of two non-
absorbing dielectrics with a common planar interface at  
z = 0 that spreads infinitely in x and y directions. The 
optical properties of non-magnetic media 1 (z < 0) and 
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2(z > 0) are described by the constant real dielectric 
permittivities  and , respectively. We set the scalar 
potential equal to zero. For the vector potential A , we 
use the Coulomb gauge . We imply periodic 
boundary conditions in the 

1ε 2ε

0=∇A
yx −  plane and seek for the 

solution in the complex-valued form, 
)()(),( tiezt ω−= qrArA , (1) 

where  is the real propagation vector, and 
 is the frequency. The function  is found 

from the equation  

)0,,( yx qq=q
0>ω )(zA

( ) 0)( 22
02

2

=−ε+ AA qkz
dz
d , (2) 

where ,  is the Heaviside 
step-function, 

)()()( 121 zz Θε−ε+ε=ε )(zΘ
ck ω=0 . The electric field  and 

magnetic field  are found from a vector potential: 
, . At the interface 

E
H

AE 0ik= AH ×∇= 0=z , the 
tangential components of E  and  are continuous.  H

The set of modes consists of the fields created by 
the plane waves that are incident at the interface 0=z  
from either half space [3, 4]. The modes are specified by 
the complex quantum number },,,{ ςω=μ vq  where 

ps,=ν  labels polarization of the incident wave and 
. The subscripts + and – denote propagation of the 

incident wave to the right and left, respectively. Let 
 and 

±=ς

( ) ( ) ( )+
ν

+
ν

+
ν = 1eA ii A ( ) ( ) ( )−

ν
−
ν

−
ν = 2eA ii A  be the amplitudes of 

the incident waves. The unit vectors of polarization are 
defined as  

( ) ( )0,,1
xysjs qq

q
−=≡± ee ,  

( ) ( 2

0

,1 qk
qk jz

j
jp −±

ε
=± qe
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) , (3) 

where 22
0 qkk jjz −ε= , the subscript  denotes 

the media. The mode 

2,1=j

},,,{ +ω vq  are given by  

( ) ( ) ( ) ( ) ( )( zikzik
i

zz ereAz 11
1121

−−
νν

+
ν

+
ν

+
ν += eeA ), , (4) 0≤z

( ) ( ) zik
i

zetA 2
212
+
νν

+
ν= e , .  0≥z

Here,  and  ( ) are the Fresnel 
amplitudes of reflection and transmission,  

jjr ′ν jjt ′ν jj ′≠

jzjjjz

jzjjjz
jj kk

kk
r

εε
εε

′′

′′
′ν +

−
= ,  ( jj

j

j
jj rt ′ν

′
′ν += 1

ε
ε ). (5) 

Let us now calculate the spectral and angular 
density of energy flow associated with the above 
introduced modes. To calculate the Poynting vector,  

][
4

HES ×
π

=
c , (6) 

we express the physical fields  and  via the real 
vector potential. For z-component of the Poynting vector 
averaged over time, which corresponds to rightwards–
propagating incident wave, we find  

E H

( ) ( )
zizi kS 1

2

2
),( +

ν
+
ν π

ω
=ω Aq . (7) 

Replacing  with  and  with zk1 zk2− ( )+
νiA ( )−

νiA  in 
Eq. (7), we get the classical expression for the density of 
the normal flow ( )−

ν ziS  associated with the leftwards–
propagating incident wave. The same values associated 
with a photon with the energy  are given by  ωh

( ) ( )
22 L

SS zizi π
ω

=−= −
ν

+
ν

h , (8) 

where  is the area of normalization in the 2L yx −  
plane. Comparing the classical and quantum expressions 
for the energy flows, we find  

( )

z
i kL

A
1

2

2 h
=+

ν ,  ( )

z
i kL

A
2

2

2 h
=−

ν . (9) 

In the conventional quantization scheme, the 
amplitudes ( )±

νiA  are determined from the 
orthonormalization condition [3] for scalar product 
corresponding to the electromagnetic energy density. It 
is convenient to write this condition in the following 
form  

( ) ( ) ( ) ( ) ( ) )ω(ωδδδ
ω
π2zε ςςνν2

2

νω ′−= ′′
∞

∞−

ς′∗
′′

ς
ων∫ L

czzdz hAA .(10) 

The amplitude factors ( ) 2±
νiA  determined from 

Eq. (10) with ς′ν′=ςν ,,  coincide with those given by 
Eq. (9). Thus, the mode normalizations with respect of 
the density of electromagnetic energy and the density of 
energy flow lead to the same results.  

For 0≤z , the time-averaged density of energy 
flows ( )±

νzS  associated with the modes are given by  

( ) ( ) ( )
ziz kARS 1

212ν

2
1

ω
π

−
= +

ν
+
ν ,  (11) 

( ) ( )
ziz kATS 1

221

2
ω

π
−= −

ν
ν−

ν . (12) 

Here, 2
1212 νν = rR  and 2

2121 νν = tT  are the 
reflection and transmission coefficients. Using Eqs. (5) 
and (9), we obtain  

( ) ( ) 0=+ +
ν

−
ν zz SS . (13) 

Obviously, equality (13) is valid in dielectric 2 as 
well. Thus, for photon modes of each polarization, the 
leftwards– and the rightwards–propagating energy flows 
compensate each other, and the total energy flow 
through an arbitrary plane parallel to the interface is 
absent. It is worth to mention that a definition of the 

92 



 
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2011. V. 14, N 1. P. 91-97. 

 

electromagnetic-energy flow, contrary to that of the 
electromagnetic energy, remains valid in an absorbing 
medium as well. In the next Section, we describe the 
field quantization in the presence of an absorbing 
medium based on the mode normalization with respect 
to the density of electromagnetic energy flow. 

3. Photon modes in the presence  
of absorbing medium 
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)
)

We now consider the structure consisting of the non-
absorbing dielectric 1  and absorbing dielectric 2 

. The material 2 is characterized by the complex 
permittivity 

( 0<z
( 0>z

)()()( 222 ωε ′′+ωε′=ωε i . We set the scalar 
potential equal to zero. For the one-interface structure, 
we choose two types of the field modes. The first one 
formally coincides with the considered above  
modes (Eqs (4), (5) with the complex function ). 
The second type of modes corresponds to the 
electromagnetic field generated by the noise-current 
fluctuations in the absorbing medium 2. It should be 
noted that the modes of the first type are defined in the 
absence of the noise current, and the field generated by 
the current fluctuations is calculated in the absence of 
the external incident waves.  

},,,{ +ω vq
)(2 ωε

To calculate the field emitted by the absorbing 
medium 2, we divide its volume into small cubic cells of 
the volume  and assume that a point electric dipole 
with the moment  is placed in the center m  of 
each cell. The vectors  are assumed to have 
random orientations; their magnitude  does not 
depend on position and orientation. This model 
corresponds to the isotropic and homogeneous medium. 
The vector potential  of the field emitted by the 
oscillator m  satisfies the equation  

VΔ
tie ω)( −mp

)(mp

0p

mA

)()(4)()( 0
2
0 zikzk Θ−δπ=ε+∇∇−Δ mrpAAA mmm . 

 (14) 
The solution of Eq. (14) obeying the outgoing-

wave boundary conditions as  has been 
obtained in [12]. Writing 

±∞→z

( )∑ ω−−=
q

mrq
m qArA tii

z emzt ),,(),( , (15) 

we have for  and  0≤z zmz ′→

( )( ) ( ) zikzki

z

zz ee
k

tkzz 12
12

2

2102),,( −

ν

−
ν

−
ν

′ν∑ π
=′ epeqA . (16) 

Assuming that the fields emitted by different 
oscillators are incoherent, we replace the time-averaged 
Poynting vector by a sum of the partial Poynting vectors 
corresponding to radiation of separate cells. Therefore, 
the density of flow emitted to the outside of the 
absorbing dielectric is given by 

( ) ∑π
ω

=
m

mA z
em

z kS 1
2 Re

2
.  (17) 

This expression has to be averaged over all possible 
directions of the dipole moment p . Let )(pf  denotes 
the orientation average of the function . Replacing 
the discreet variable  by the continuous vector 

)(pf
m r′ , we 

calculate the sum by the integration,  

∑ ∫ ∫
∞

′′′
Δ

→
m 0 2

1

L

ydxdzd
V

.  (18) 

Upon the integration over  and , the terms 
with 

x′ y′
qq ≠′  and ν≠ν′  disappear (in Eq. (17), the 

averages over the orientations do not depend on m ). We 
get  

3
(

2
02 p

s =p)e , ( )

( ) 2
2

0

2
2

22
02

2 3
)(

ε

+
=−

qk
kp z

p

q
pe . (19) 

The integration over z′  yields 
( ) ( )∑

ν
ν ω=

q
q

,
),(em

z
em

z SS , (20) 

where  

( ) ( 12
2

2

2
0 1

3
2

),( νν −
ε ′′Δ
ωπ

−=ω R
VL

p
S em

z q ) . (21) 

To determine the unknown parameter Vp Δ
2

0 , 
we use the fact that for the modes of each polarization 
for the leftwards– and the rightwards–propagating 
energy flows compensate each other. Substituting the 
result of Eq. (21) into Eq. (13) for ( )−

νzS , we get  

2
22

0 4
3

π
ε ′′Δ

=
Vp h . (22) 

Let ( ) ( ) ( )−
ν

−
ν

−
ν ≡ 200 eA A  be the amplitude of a wave 

incident at the interface 0=z  from a volume of the 
absorbing medium. The transmitted wave ( )0≤z  is 
given by  

( ) ( ) ( ) ( ) tiiem eAt ω−−
νν

−
ν = rkerqA 1

1,, , (23) 

where ( ) ( )
210 ν

−
νν ≡ tAA em , ),( 11 zk−= qk , and  

( ) ( )( ) zik

z

zezzd
k

kiA ′−
ν

∞
−
ν ′′ωπ

−= ∫ 2)(2
2

02

0
0 pe . (24) 

The orientation-averaged amplitude factors become  

( ) ( ) ( )
( )20221

22
222

022
2

22

0 ,
Lkk

qkk
A

Lk
kA

z

zz
p

z

z
s

εε

+′
=

′
= −− hh , (25) 

( ) ( ) 22 +
ννν = i

em AEA , (26) 

where 121 νν −= RΕ  is the emissivity of the semi-infinite 
media 2. We will call the plane waves (23) by 

},,,{ emvqω  modes. In the limit , the amplitudes 
(25) coincide with those given by Eq. (9). In this case, 
the wave (23) corresponds to  mode 

02 →ε′′

},,,{ −ω vq ( )0≤z .  
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Thus, in the half space , the electromagnetic 
field (13) can be presented by the modes  
(Eqs (4), (9)) and the modes  (Eqs (23), 
(25), (26)):  

0≤z
},,,{ +ω vq

},,,{ emvqω

∑
μ

ω−
μμ += ..)(),( ccezat tiiqrArA  (27) 

Here Σμ denotes the summation over q , ν , 
em,+=ς  and the integration over the frequency 

. The quantization of the field is to regard the 

coefficients  and  in Eq. (27) as a photon 
annihilation and creation operators, respectively. Note 
that the appropriate solutions of Eq. (14) for , with 
the magnitude of the dipole moment given by Eq. (22), 
provide the quantum description of the electromagnetic 
field inside the absorbing dielectric 2 as well. One can 
show that the operator-valued  (Eq. (27)) satisfies the 
commutation relation  

( ∞≤ω≤0
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)
μa ∗

μa

0≥z

Â

)(4),(),,( 2 rrrr ′−δδπ=⎥
⎦

⎤
⎢
⎣

⎡
∂
′∂

lk
k

l ci
t

tAtA h , (28) 

which has been postulated but not derived in works 
[7-11].  

The obtained results may be extended to multilayer 
absorbing structures. Consider, for example, a non-
transparent multilayer structure  bounded by a 
non-absorbing dielectric (

( 0>z )
)0≤z . In the half space 

, the field can be presented by the same modes 
 and , but the amplitudes of 

reflection and transmission in Eq. (4) and the emissivity 
in Eq. (26) have to be replaced by generalized 
expressions taking into account all interfaces. For semi-
transparent absorbing structures ( , the mode 
expansion (27) for  includes also the mode 

 – the field created by a wave which is 
incident at the interface 

0≤z
},,,{ +ω vq },,,{ emvqω

)lz ≤≤0
0≤z

},,,{ −ω vq
lz =  from the non-absorbing 

half space . In this case, the coefficient  in 
Eq. (26) is the emissivity of the layer . 

lz > νΕ
( )lz ≤≤0

4. Radiative lifetime of an excited two-level system  

In this Section, we examine the spontaneous decay of an 
excited two-level atomic system placed near a plane 
surface of an absorbing medium. It is known (see, e.g., 
[13] and references therein) that the spontaneous decay 
is controlled by the configuration and dielectric 
properties of atom’s macroscopic surrounding. In 
classical electrodynamics, an emitting atom is described 
as an oscillating point electric dipole driven by the 
reflected part of its own radiation field. In quantum 
theory, modification of the spontaneous emission stems 
from a dependence of the transition probability on the 
position of the atom. For non-absorbing dielectrics, 
when the relative emission rate is defined as a ratio of 

the emission rate to its bulk value, the classical and 
quantum theories (in dipole approximation) gave the 
same result [3]. Here, we compare the analogous results 
for an atomic system in the presence of an absorbing and 
dispersing medium.  

We first consider a two-level atom located at the 
position ( )00 ,0,0 z−=r  in the non-absorbing 
dielectric 1,  is the distance to the absorbing dielectric 0z
( )0≥z . The interaction of electrons with a weak 
electromagnetic field is describes by  

( ∇−= A
cm
eiH h

int ) , (29) 

where  and  are the charge and mass of electron. For 
transitions between the first excited state 2 and the 
ground state 1, the spontaneous emission rate 

e m

211 W≡τ  
( τ  is the radiative lifetime of the excited state and  
is the transition probability) is determined using the 
Fermi golden rule: 

21W

((∑
μ

μ −−ωδ ))π
= 12

2)(
1221

2 EEMW h
h

. (30) 

Here,  is the matrix element of the transition, 
 and  are the electron energies. The wavelengths 

of emitted photons are assumed to be large as compared 
to the atom size. So, the vector potential  can be 
replaced with  (dipole approximation). Replacing 
the summation over 

)(

12
μ

M

2E 1E

)(rA
)( 0rA −
q  by the integration, we obtain  

( ) ( )( )∑ ∫
ςν

ν −
π

=ω
ς

,

2
2102

2
0

21
)(

2
)( qdA dzLkW

h
, (31)  

where  is the dipole matrix element, 21d ck ω=0 , and 
h)( 12 EE −=ω . Let 0τ  denotes the radiative lifetime 

of the atom placed in a boundless dielectric with the real 
permittivity 1ε . Using the bulk modes },,,{ ±ω vq  
( ,012 =νr  )121 =νt , we get  

h3
41 1

2
21

3
0

0

ε
=

τ
dk

. (32) 

This rate coincides with that for emission of 
conventional bulk photons introduced using the periodic 
boundary conditions [13]. Substituting the functions 
given in Eqs (4), (9) and Eqs (23), (26) into Eq. (31) for 
the photon modes, we obtain the following expression 
after straightforward calculation: 

∫
∞ φ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ξ−ε
ξ

ε
+=

τ
τ

0
11

0 1Re
8

31 ierd . (33) 

Here, ( )0/ kq=ξ , ξ−ε=φ 1001 2 zk , and r  is the 
effective amplitude of reflection:  

ϑ
ε
ξ

+ϑ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ε
ξ

+= 2
12

1

2
12

1
12 cos2sin1 pps rrrr , (34) 
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where  is the angle between the vector  and the 
interface normal. Note that the relative spontaneous 
emission rate determined by Eqs (33), (34) coincides 
with that given by the classical theory [13]. Our 
calculations show that such agreement takes place also 
for an atom placed near a multilayer absorbing structures 
and semi-transparent slab. The obtained agreement 
between the classical and quantum theories (in the dipole 
approximation) forms a check on the validity of our 
quantization scheme.  

ϑ 21d

 

© 2011, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
 

)

We now consider the spontaneous emission for 
intersubband transitions in a QW. The infinite deep 
rectangular QW of the dimension  is placed in the 
non-absorbing dielectric 1 parallel to the absorbing 
cladding layer ( . The QW center is at the 
distance  from the interface . We consider the 
direct transitions from the first excited state to the 
ground state (parabolic electron subbands). Note that 
only photons with  polarization provide the 
transitions. Our estimations show that 

wL

lz ≤≤0

0z 0=z

p
11 <<wz Lk , so 

that one may use the dipole approximation. The bulk rate 
of the spontaneous emission is given by Eq. (32) where 
now 

),0,0( 2121 d=d , weLd
2

21 3
4
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π

= , 2

2

2
3

wLm
hπ

=ω , (35) 

m  is the electron effective mass. For the relative 
emission rate, one gets Eq. (33) where r  is determined 
by Eq. (34) with .  0=ϑ

We will study two types of absorbing media that 
can support the surface-phonon polaritons (polar 
dielectric) and the surface-plasmon polaritons (doped 
semiconductor or metal). For polar dielectric, the 
dielectric permittivity is described by an oscillator 
model: 

ωΓ−ω−ω
ωΓ−ω−ω

ε=ωε ∞ i
i

t

l
22

22

)( , (36) 

where  is the permittivity for high frequencies, ∞ε lω  
and  are the frequencies of longitudinal and 
transverse optical phonons, and  is the damping. For a 
medium with a free electron gas, the dielectric 
permittivity is given by the Drude model:  

tω
Γ

)(
)(

2

τ+ωω

ω
−∞ε=ωε

i
p , (37) 

where  is the plasma frequency, and pω τ  is the 
plasmon relaxation time. 

Fig. 1 provides the related emission rate as a 
function of the wavelength of emitted light ω=λ cπ2  
for the QW placed near the SiC layer ( ) . The 
different  can correspond to the QWs with different 
thicknesses 

λ<<0z
λ

( )2
wL∝λ . The transition wavelength can 

also be changed by an applied electric field. For 
numerical evaluation, the GaAs quantum well was 

chosen ( , , where  is the free 
electron mass) and the following parameters of SiC [14] 
were used: 

111 =ε 0067.0 mm = 0m

7.6=ε∞ ,  112 s105.149 −×=ω t

( )μm6.12=λ t ,  , 

and . The curves 1 to 3 show how the 
thickness l of SiC layer affects the emission rate. Note 
that emission of the photon modes  
provides the leading contribution to the rate. The 
enhancement of the radiative decay in a narrow spectral 
interval is caused by emission of the evanescent waves 
with the large wave vector 

112 s107.182 −×=ω l ( )μm3.10=λ l

112 s109.0 −×=Γ

},,,{ empqω

q . The wave vector becomes 
very large for a wavelength such that 

0)(Re 1res =ε+λε . The solution of this equation 
( μm57.11res =λ ) determines the surface-polariton 
resonance in the semi-infinite SiC. For , the 
SiC layer may be considered as a semi-infinite sample, 
and the position of the maximal magnitude of the 
emission rate  is approximately equal  (curves 
1, 2, and 4). For curve 1, 

μm5.0≥l

)(1 λτ− resλ
μm6.11max ≈λ  corresponds to 

the QW thickness . As the thickness  of 
SiC layer is reduced, the dispersion relation for polariton 
starts to depend upon l , and  increases with a 
decreasing of  (curves 2 and 3). Comparing curves 1 
and 4, we see that for QW placed in the near field of the 
polar layer 

o

A125≈wL l

maxλ

l

( )λ<<0z  the emission rate fast decreases 
when the distance of QW to the layer increases. From 
Eqs (33) and (34) for small distances ( )100 <<kz  and 

large in-plane wave vectors ( )2
01

2 kq ε>> , we get the 

dependence 3
0z0 1∝ττ . Note that the 3

01 z  
dependence of the spontaneous rate corresponds to the 
variation of the electromagnetic energy density with the 
distance from the surface of absorbing medium [15]. 
 

11,2 11,6 12,0 12,4
0

40
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160

200

4 3

2

1

τ 0
 / 
τ

λ, μm  
Fig. 1. Relative rate τ0/τ of spontaneous photon emission from 
QW versus the wavelength of the emitted light for different 
thicknesses l of SiC layer and distances z0 between QW and the 
interface. For z0 = 0.2 μm, l = 1 μm (1), 0.25 μm  (2), and 
0.05 μm   (3); for z0 = 0.3 μm, l = 1 μm  (4). 
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Fig. 2. Relative rate τ0/τ of spontaneous photon emission from 
QW placed at the distance z0 = 0.3 μm from a layer of InAs 
with the thickness l versus the electron concentration Ne in the 
layer: l = 1 μm (1), 0.3 μm (2), and 0.15 μm (3).  
 

The related spontaneous emission rate for 
intersubband transitions in the QW placed near the InAs 
layer is presented in Fig. 2 as a function of the electron 
concentration  in the layer. The calculations were 
carried out for the GaAs quantum well with the 

thickness  (the wavelength of emitted light 
equals ). For InAs, the following parameters 

were used: , , . 
Fig. 2 explores the variation of the emission rate with the 
thickness l of the absorbing layer, the distance of the 
QW from the nearest interface . If , 
then the InAs layer can be treated as a semi-infinite 
medium, and the wavelength  corresponding to 
surface plasmon resonance is determined by the equation 

. Taking into account that the peak 
(curve 1) corresponds to the concentration 

, we find . For 
, the far side of the layer affects the emission 

rate (curves 2 and 3). We see that the spontaneous 
emission rate can be controlled not only by the variation 
of the electron concentration (due to doping or injection) 
but by changing the thickness of the absorbing top layer 
as well.  

eN

o

A140≈wL
μm6.14

3.12=ε∞ 004.0 mm =∗ s108 13−×=τ

μm3.00 =z μm1≥l

resλ

0ε)(εRe 1res =+λ

318 cm105 −×=eN μm4.14res =λ
μm1<l

5. Conclusion 

We have presented formalism for the electromagnetic 
field quantization in the presence of a planar multilayer 
absorbing structure. Field quantization was carried out 
by computing the complete set of orthonormal modes 
that are the solutions of the Maxwell equations for the 
macroscopic electromagnetic field with the appropriate 
boundary conditions. We have used the following two 
types of the solutions. One type defines the 
electromagnetic field related to plane waves that are 
incident from the non-absorbing dielectric half space for 

both orthogonal polarizations. Another type is the field 
generated by the current fluctuations in the absorbing 
medium. The modes are normalized with respect to the 
electromagnetic energy flow. It is assumed that the 
averaged over time normal to the surface component of 
the Poynting vector, which is associated with the 
incident wave of the frequency ω , equals to the density 
of energy flow of the quanta . This condition 
determines the amplitudes of the incident waves. To 
determine the amplitudes of the waves emitted by the 
absorbing medium, we assume that the total 
electromagnetic energy flow for the given frequency, 
direction, and polarization is absent.  

ωh

To demonstrate the applicability of the theory, we 
have calculated the rate of the spontaneous photon 
emission of an excited two-level atom located in a non-
absorbing dielectric near an absorbing and dispersing 
medium. We have proved that the relative spontaneous 
emission rate determined in the dipole approximation 
coincides with that given by the classical point-dipole 
theory. We have also calculated the rate of photon 
emission for transitions between electron subbands in a 
quantum well placed nearby an absorbing layer 
supporting surface phonon or plasmon polaritons. When 
the separation between the quantum well and layer is 
much smaller than the radiation wavelength (the near-
field zone) the rate was found to be resonant increased.  
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