1. P.T. Landsberg,
V. Badescu, Solar energy conversion: list of efficiencies and some
theoretical considerations. Part I – Theoretical considerations .
Progress in Quantum Electronics, 22(4), p. 211-230 (July 1998). https://doi.org/10.1016/S0079-6727(98)00012-3
2.
P.T. Landsberg, V. Badescu, Solar energy conversion: List of
efficiencies and some theoretical considerations. Part II – Results .
Progress in Quantum Electronics, 22(4), p. 231-255 (July 1998). https://doi.org/10.1016/S0079-6727(98)00013-5
3. V.A. Green, Third Generation Photovoltaic: Advanced Solar Energy. Springer, New York, 2003.
4.
W. Shockley and H.J. Queisser, Detailed balance limit of
efficiency of p-n junction solar cells . J. Appl. Phys. 32(3), p.
510-519 (1961). https://doi.org/10.1063/1.1736034
5.
C.H. Henry, Limiting efficiencies of ideal single and multiple
energy gap terrestrial solar cells . J. Appl. Phys., 51, p. 4494 (1980). https://doi.org/10.1063/1.328272
6.
M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell
efficiency tables (version 37) . Progress in Photovoltaics: Research
and Applications, 19, p. 84-92 (2011). https://doi.org/10.1002/pip.1088
7.
S. Yoon, V. Garboushian, D. Roubideaux, Reduced temperature
dependence of high-concentration photovoltaic solar cell open-circuit
voltage (Voc) at high concentration levels . IEEE First World Conf. on
Photovoltaic Energy Conversion, Conference Record of the 24th IEEE
Photovoltaic Specialists Conf., vol. 2, p. 1500-1504 (1994).
8.
A.Q. Malik, Lim Chee Ming, Tan Kha Sheng and M. Blundell,
Influence of temperature on the performance of photovoltaic
polycrystalline silicon module in the Bruneian climate . ASEAN J. on
Science & Technology for Development (AJSTD), 26(2), p. 61-72
(2010).
9. G. Landis, D. Merritt, R.P.
Raffaelle, D. Scheiman, High-temperature solar cell development . 18th
Space Photovoltaic Research and Technology Conf., p. 241-247 (2005).
Report number: NASA/CP-2005-213431.
10. Photovoltaics take a load off soldiers . http/www.solar.udel.edu/CSOctSOL-Darpa-reprint.pdf.
11.
A. Barnett, C. Honsberg, D. Kirkpatrick, et al., 50% efficient
solar cell architecture and designs . IEEE 4th Word Conf. Photovoltaic
Energy Conversion. vol. 2, p. 2560-2564 (2006).
12.
A. Barnett, D. Kirkpatrick, C. Honsberg et al., Milestones toward
50% efficient solar cell modules . 22nd Europ. Photovoltaic Solar
Energy Conf., Milan, Italy, September 3, 2007, p. .
13.
D.A. Caselli, C.Z. Ning, High-performance laterally-arranged
multiple bandgap solar cells using spatially compositiongraded
nanowires on a single substrate: a design study . Opt. Exp. 19(S4), p.
A686-A6944 (July 2011); https://doi.org/10.1364/OE.19.00A686
J.I.
Alferov, V.M. Andreev, V.D. Rumiantsev Tendencies and perspectives
development of solar photo energetics . Fizika i teknika
poluprovodnikov, 38(8), p. 937-947 (2004), in Russian.
14.
B. Mitchell, G. Peharz, G. Siefer et al., Four-junction spectral
beam-splitting photovoltaic receiver with high optical efficiency .
Progress in Photovoltaics: Research and Applications, 19, p. 61-72
(2011). https://doi.org/10.1002/pip.988
15.
U. Caglar, Studies of printing technology with focus on
electronic materials . Thesis for the degree of Doctor of Technology.
Tampere University of Technology. Tampere, Finland, 2009.
16.
O. Azucena, J. Kubby, D. Scarbrough, C. Goldsmith, Inkjet
printing of passive microwave circuitry . Microwave Symposium Digest
2006 IEEE MTT-S Intern. p. 1075-1078 (2008).
17.
S.B. Fuller, E.J. Wilhelm, J.M. Jacobson, Ink-jet printed
nanoparticle microelectromechanical systems . J. Microelectromech.
Systems, 11(1), p. 1-7 (February 2002). https://doi.org/10.1109/84.982863
18.
A. Gopal, K. Hoshino, S. Kim, X. Zhang, Microcontact printing of
multicolor quantum dots light emitting diode on silicon . Conf. on
Lasers and Electro-Optics, Baltimore, Maryland, USA (2009), p. .
19.
A. Kamyshny, J. Steinke, S. Magdassi, Metal-based inkjet inks for
printed electronics . The Open Appl. Phys. J., 4, p. 19-36 (2011).
20.
T. Kaydanova, A. Miedaner, C. Curtis, J. Perkins, J. Alleman, D.
Ginley, Ink jet printing approaches to solar cell contacts . National
Center for Photovoltaics and Solar Program Review Meeting, Denver,
Colorado March 24-26, 2003.
21. A.
Mokri, M. Emziane, Beam-splitting versus tandem cell approaches for
converting the solar spectrum into electricity: A comparative study .
Intern. Renewable Energy Congress IREC2010, Sousse, Tunisia, November
5-7, 2010, p. .
22. K. Xiong, S. Lu, J.
Dong, T. Zhou, D. Jiang, R. Wang, H. Yang, Light-splitting photovoltaic
system utilizing two dual-junction solar cells . Solar Energy, 84, p.
1975-1978 (2010). https://doi.org/10.1016/j.solener.2010.10.011
23.
Dichroic laser mirrors. The unitary enterprise of "Aksikon",
National Academy of Sciences of Republic of Belarus, Minsk (2002).
24. Volume Phase Gratings (VPGTM) . ® BaySpec, Inc. White Paper. 11/20/2002, p. .
25.
J.E. Ludman, Photovoltaic Systems Based on Spectrally Selective
Holographic Concentrators . Final Report for Period May 1991 to
December 1991. Aero Propulsion @ Power Directorate Wright Laboratory
Air Force Materiel Command Wright Patterson Air Force Base, Ohio
45433-6563.
26. M. Aiko, Hyperspectral
prism-grating-prism imaging spectrograph . Technical research centre of
Finland. Finland, ESPOO 2001, p. .
27.
S.C. Barden, J.A. Arns, W.S. Colburn, Volume-phase holographic
gratings and their potential for astronomical applications, in: Optical
Astronomical Instrumentation, Ed. S. D'Odorico . Proc. SPIE, 3355, p.
866 (1998). https://doi.org/10.1117/12.316806
28.
P.-A. Blanche, P. Gailly, S. Habraken, P. Lemaire, C. Jamar,
Volume phase holographic gratings: large size and high diffraction
efficiency . Opt. Eng. 43(11), p. 2603-2612 (2004). https://doi.org/10.1117/1.1803557
29. Introduction to Diffraction Grating – thorlabs.com . www.thorlabs.com.
30.
P.D. Maker, R.E. Muller, D.W. Wilson, P. Mouroulis, New convex
grating types manufactured by electron beam lithography . Diffractive
Optics and Micro-Optics, 10, p. 234-236 (1998).
33.
M.T. Gale, C. Gimkiewicz, S. Obi, M. Schnieper, J. Sochtig, H.
Thiele, S. Westenhofer, Replication technology for optical microsystems
. Opt. and Lasers in Eng. 43, p 373-386 (2005). https://doi.org/10.1016/j.optlaseng.2004.02.007
34.
J.Y. Kim, N.B. Brauer, V. Fakhfouri, D.L. Boiko, E. Charbon, G.
Grutzner, J. Brugger, Hybrid polymer microlens arrays with high
numerical apertures fabricated using simple ink-jet printing technique
. Opt. Mater. Exp. 1(2), p. 259-269 (2011). https://doi.org/10.1364/OME.1.000259
35.
E. Brinksmeier, A. Gessenharter, D. Pérez, J. Blen, P. Benítez,
V. Díaz, J. Alonso, Design and manufacture of aspheric lenses for novel
high efficient photovoltaic concentrator modules . Proc. ASPE 19th
Annual Meeting, Orlando, Florida, USA, October 24-20, 2004, p. 582-585.
36.
T. Kirchartz, Generalized detailed balance theory of solar cells
. Von der Fakultat fur Elektrotechnik und Informationstechnik der
Rheinisch-Westf¨alischen Technischen Hochschule Aachen zur Erlangung
des akademischen Grades eines Doktors der Ingenieurwissenschaften
genehmigte Dissertation. 6 Februar 2009, p. .
37.
I.P. Suzdalev, Nanotechnology: Physics-Chemistry of Nanoclusters,
Nanostructures and Nanomatters. KomKniga, Moscow, 2006 (in Russian).
38.
P. Buffat, J.P. Borel, Size effect on the melting temperature of
gold particles . Phys. Rev. A, 13, p. 2287-2298 (1976). https://doi.org/10.1103/PhysRevA.13.2287
39.
J. Yanfeng, Z. Yamin, Influence of gold particle size on melting
temperature of VLS grown silicon nanowire . J. Semiconductors, 31(1),
012002-1 – 012002-5 (2010).
40. G.
Guisbiers, S. Pereira, Theoretical investigation of size and shape
effects on the melting temperature of ZnO nanostructures .
Nanotechnology, 18, 435710 (6p.), (2007).
41.
G. Schmid, B. Corain, Nanoparticulated Gold: Syntheses,
Structures, Electronics, and Reactivities . Eur. J. Inorg. Chem. 17, p.
3081-3098 (2003). https://doi.org/10.1002/ejic.200300187
42.
Z. Radivojevic, K. Andersson, K. Hashizume, M. Heino, M.
Mantysalo, P. Mansikkamaki, Y. Matsuba, N. Terada, Optimised curing of
silver ink jet based printed traces . Dans Proc. 12th Intern. Workshop
on Thermal Investigations of ICs – THERMINIC 2006, Nice, France (2006).
arXiv:0709.1842 [cond-mat.mtrl-sci].
44.
G. Guisbiers, G. Abudukelimu, D. Hourlier, Size-dependent
catalytic and melting properties of platinum-palladium nanoparticles .
Nanoscale Res. Lett. 6(1), p. 396 (2011). https://doi.org/10.1186/1556-276X-6-396
45.
S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, L.H. Allen,
Size-dependent melting properties of small tin particles:
Nanocalorimetric measurements . Phys. Rev. Lett. 77(1), p. 99-102 (1
July 1996). https://doi.org/10.1103/PhysRevLett.77.99
46.
S. Griffith, Towards personal fabricators: Tabletop tools for
micron and sub-micron scale functional rapid prototyping . Thesis
degree of Master of Science in Media Arts and Sciences at the
Massachusetts Institute of Technology, February 2001.
47.
M.F.A.M. van Hest, C.J. Curtis, A. Miedaner, R.M. Pasquarelli, T.
Kaydanova, P. Hersh, and D.S. Ginley, Direct-write contacts:
Metallization and contact formation . 33rd IEEE Photovoltaic
Specialists Conf., San Diego, California, May 11-16, 2008. https://doi.org/10.1109/pvsc.2008.4922798
48.
A. Mette, New Concepts for Front Side Metallization of Industrial
Silicon Solar Cells . Dissertation zur Erlangung des Doktorgrades der
Fakultät für Angewandte Wissenschaften der Albert-Ludwigs-Universität
Freiburg im Breisgau, 2007.
49. J.
Perelaer, A.W.M. de Laat, C.E. Hendriksa, U.S. Schubert, Inkjet-printed
silver tracks: low temperature curing and thermal stability
investigation . J. Mater. Chem., 18, p. 3209-3215 (2008). https://doi.org/10.1039/b720032c
50.
J. Perelaer, U.S. Schubert, Inkjet printing and alternative
sintering of narrow conductive tracks on flexible substrates for
plastic electronic applications . Radio Frequency Identification
Fundamentals and Applications, Design Methods and Solutions. Ed. C.
Turcu. INTECH, Croatia, downloaded from SCIYO.COM.
51.
J. Chung, S. Ko, C.P. Grigoropoulos, N.R. Bieri, C. Dockendorf,
D. Poulikakos, Microconductors on polymer by nanoink printing and
pulsed laser curing . Proc. HTFE'04 2004 ASME Heat Transfer/Fluids Eng.
Summer Conf. Charlotte, North Carolina, July 11-15, 2004
HT-FED2004-56702. https://doi.org/10.1115/ht-fed2004-56702
52.
M.L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanpera,
M. Suhonen, H. Seppa, Electrical sintering of nanoparticle structures .
Nanotechnology, 19, 175201 (2008). https://doi.org/10.1088/0957-4484/19/17/175201
53.
J. Chung, S. Ko, C.P. Grigoropoulos, N.R. Bieri, C. Dockendorf,
D. Poulikakos, Damage-free low temperature pulsed laser printing of
gold nanoinks on polymers . J. Heat Transfer, 127, p. 724-732 (July
2005). https://doi.org/10.1115/1.1924627
54.
S.M. Bidoki, D.M. Lewis, M. Clark, A. Vakorov, P.A. Millner, D.
McGorman, Ink-jet fabrication of electronic components . J. Micromech.
Microeng. 17, p. 967-974 (2007). https://doi.org/10.1088/0960-1317/17/5/017
55.
C. Curtis, T. Rivkin, A. Miedaner, J. Alleman, J. Perkins, L.
Smith, D. Ginley, Metallizations by direct-write inkjet printing.
Preprint . NCPV Program Review Meeting, Lakewood, Colorado, October
2001, p. 14-17.
56. J.S. Kang, J. Ryu,
H.S. Kim, H.T. Hahn, Sintering of inkjet-printed silver nanoparticles
at room temperature using intense pulsed light . J. Electron. Mater.
40(11), p. 2268-2277 (2011). https://doi.org/10.1007/s11664-011-1711-0
57.
B.K. Parka, D. Kim, S. Jeong, J. Moon, J.S. Kim, Direct writing
of copper conductive patterns by ink-jet printing . Thin Solid Films,
515, p. 7706-7711 (2007). https://doi.org/10.1016/j.tsf.2006.11.142
58.
K.F. Teng, R.W. Vest, Application of inkjet technology on
photovoltaic metallization . IEEE Electron. Device Lett. 9(11), p.
591-592 (1998). https://doi.org/10.1109/55.9286
59.
Y. Qi, T. Cagin, Melting and crystallization in Ni nanoclusters:
The mesoscale regime . J. Chem. Phys., 115(1), p. 385-3941 (July 2001). https://doi.org/10.1063/1.1373664
60.
C.J. Curtis, M. van Hest, A. Miedaner, T. Kaydanova, L. Smith,
and D.S. Ginley, Multi-layer inkjet printed contacts to Si . 2005 DOE
Solar Energy Technologies Program Review Meeting, Denver, Colorado,
November 7-10, 2005.
61. H. Antoniadis,
Silicon ink high efficency solar cells . 34th IEEE Photovoltaic
Spesialists Conference (PVSC), Philadelphia, USA, 2009, p. .
62.
A. Gupta, A.S.G. Khalil, M. Winterer, H. Wiggers, Stable
colloidal dispersion of luminescing silicon nanoparticles for ink-jet
printing . Nanotechnology, 2, p. 538-541 (2010).
63.
J.P. Borah, J. Barman, K.C. Sarma, Structural and optical
properties of ZnS nanoparticles . Chalcogenide Lett. 5(9), p. 201-208
(2008).
64. J.H. Johnston, A.C. Smalla,
N. Clarkb, Colour tuneable photoluminescent quantum dots for ink-jet
printing of security documents and labels . Chemistry in New Zealand,
74, p. 70-71 (April 2010).
65. Hao Wei,
Meng Li, Zichao Ye, Zhi Yang, Yafei Zhang, Novel Ga-doped ZnO
nanocrystal ink: Synthesis and characterization . Mater. Lett. 65, p.
427-429 (2011). https://doi.org/10.1016/j.matlet.2010.10.084
66.
S.T. Meyers, J.T. Anderson, C.M. Hung, J. Thompson, J.F. Wager,
D.A. Keszler, Aqueous inorganic inks for low-temperature fabrication of
ZnO TFTs . J. Amer. Chem. Soc. 130, p. 17603-17609 (2008). https://doi.org/10.1021/ja808243k
67.
M. Shakira, Siddhartha, G. Bhagavannarayana, M.A. Wahab,
Structural, optical and electrical properties of ZnSe semiconductor
nanoparticles . Chalcogenide Lett. 8(7), p. 435-440 (2011).
68.
G. Fracasso, Synthesis and physical-chemical characterization of
metallic nanoparticles . Dottorato di Ricerca in Scienze Chimiche Ciclo
XXII. Università di Bologna. 2010.
69.
C. Dwivedi, C.P. Shah, K. Singh, M. Kumar, P.N. Bajaj, An organic
acid-induced synthesis and characterization of selenium nanoparticles .
J. Nanotechnology, 2011, Article ID 651971, 6 pages (2011).
70.
I.O. Oladeji, L. Chow, Synthesis and processing of CdS/ZnS
multilayer films for solar cell application . Thin Solid Films, 474, p.
77-83 (2005). https://doi.org/10.1016/j.tsf.2004.08.114
71.
N. Revaprasadu and S.N. Mlondo, Use of metal complexes to
synthesize semiconductor nanoparticles . Pure Appl. Chem., 78(9), p.
1691-1702 (2006). https://doi.org/10.1351/pac200678091691
72.
K. Yamada, K. Hoshino, K. Matsumoto, I. Shimoyama, Electro-static
trapping and deposition of nanoparticles in a submicron narrow gap for
a lateral-electrode LED . 17th IEEE Intern. Conf. (MEMS), Micro Electro
Mechanical Systems 2004. p. 49-52 (2004).
73.
D.J. Suh, O.O. Park, H.-T. Jung, M.H. Kwon, Optical properties
and characteristics of the CdSe nanoparticles synthesized at room
temperature . Korean J. Chem. Eng. 19(3), p. 529-533 (2002). https://doi.org/10.1007/BF02697168
74.
J. Smith, D. Mager, U. Loeffelmann, J.G. Korvink, Can inkjet
printing produce MRI coils? . Proc. Int. Soc. Mag. Reson. Med. 16, p.
1126 (2008).
75. Y. Liu, W. Chen, A.G.
Joly, Y. Wang, C. Pope, Y. Zhang, J.-O. Bovin, P. Sherwood, Comparison
of water-soluble CdTe nanoparticles synthesized in air and in nitrogen
. J. Phys. Chem. B, 110(34), p. 16992-17000 (2006). https://doi.org/10.1021/jp063085k
76.
S.S. Kher, R.L. Wells, New method for the synthesis of
nanocrystalline gallium arsenide and gallium phosphide . J. Chem.
Mater. 6(11), p. 2056-2062 (1994). https://doi.org/10.1021/cm00047a027
77.
M.A. Malik, P. O'Brien, S. Norager and J. Smith, Gallium arsenide
nanoparticles: Synthesis and characterisation . J. Mater. Chem., 13, p.
2591-2595 (2003). https://doi.org/10.1039/b305860n
78.
S. Schulz, The chemistry of group 13/15 compounds (III–V
compounds) with the higher homologues of group 15, Sb and Bi .
Coordination Chem. Rev. 215, p. 1-37 (2001). https://doi.org/10.1016/S0010-8545(00)00401-X
79.
H. Lee, M.G. Kim, C.H. Choi, Y.-K. Sun, C.S. Yoon, J. Cho,
Surface-stabilized amorphous germanium nanoparticles for
lithium-storage material . J. Phys. Chem. B, 109, p. 20719-20723 (2005). https://doi.org/10.1021/jp052620y
80.
Reference Book on Electrical Engineerings Materials. Eds. Yu.V.
Koritskii, A.A. Pasynkov, B.M. Tareev. Vol. 2. Energoizdat, Moscow,
1987 (in Russian).
81. A. Costello, D.
Doherty, J. LeBeau, R. Warren, Multilayer polymer inkjet printing.
Report for a major qualifying project . Worcester Polytechnic
Institute, England (2010).
82. S.K.
Bleech, M. Santos 3D Polymer Printing with Desktop Inkjet Technology. A
major qualifying project report . Worcester Polytechnic Institute,
England (2009).
83. J. Perelaer, P.
Kröber, J.T. Delaney, U.S. Schubert, Fabrication of two and
three-dimensional structures by using inkjet printing . NIP25 and
Digital Fabrication (2009), p. 791-794.
84.
R.Y. Utama, Inkjet printing for commercial high-efficiency
silicon solar cells. Dissertation Sheet of PhD in Photovoltaic
Engineering . ARC Centre of Excellence for Advanced Photovoltaics and
Photonics, University of New South Wales Sydney, Australia, March 2009.
85.
E. Tekin, Thin film libraries of functional polymers and
materials prepared by inkjet printing . Eindhoven, Technische
Universiteit Eindhoven, 2007.
86. S.
Liker, Use of stainless steel piezo inkjet printheads to enable jetting
of aggressive etchants for improved solar PV cell processing .
Trident-ITW Trident Solar Division, 8 Sept. 2009.
87.
256Jet-S Printhead . Information from Trident Industrial Ink Jet,
1114 Federal Road Industrial Park Drive, Brookfield, Connecticut, USA.
88.
Yuan Zhao, Ming-Yu Sheng, Wei-Xi Zhou et al., A solar
photovoltaic system with ideal efficiency close to the theoretical
limit . Opt. Exp. A, 20(S1), p. A28-A38 (2012). https://doi.org/10.1364/OE.20.000A28
89.
N.V. Yastrebova, High-efficiency multi-junction solar cells:
Current status and future potential . Centre for Research in Photonics,
University of Ottawa, Canada, April 2007.
90.
J.M. Olson, D.J. Friedman, and S. Kurtz, High-efficiency III-V
multijunction solar cells . Handbook of Photovoltaic Science and
Engineering. Eds. A. Luque and S. Hegedus. John Wiley & Sons, 2003.
91.
H. Antoniadis, High efficiency, low cost solar cells manufactured
using 'Silicon Ink' on thin crystalline silicon wafers . Innovalight
DOE report (2011), 41 p.
92. T.
Kaydanova, M.F.A.M. van Hest, A. Miedaner et al., Direct write contacts
for solar cells . 31st IEEE Photovoltaics Specialists Conf. and
Exhibition, Lake Buena Vista, Florida, January 3-7, 2005. https://doi.org/10.1109/pvsc.2005.1488380
93.
T. Rivkin, C. Curtis, A. Miedaner, J. Perkins, J. Alleman, D.
Ginley Direct write processing for photovoltaic cells . 12th Workshop
on Crystalline Silicon Solar Cell Materials and Processes, August 2002,
p. 223-226 (2002). https://doi.org/10.1109/pvsc.2002.1190854
94.
R. Pasquarelli, C. Curtis, M. van Hest, Inkjet printing of nickel
and silver metal solar cell contacts . J. Undergraduate Res. 8, p.
91-96 (2008).
95. V.M. Andreev, V.V.
Evstropov, V.C. Kalinovskii, V.M. Lantratov, V.P. Hvostikov, Current
passage and potential efficiency of sun elements on the basis of
p-n-transitions from GaAs and GaSb . Fizika i teknika poluprovodnikov,
43(5), p. 671-678 (2009), in Russian.
96. A. Farenbruh, R. Bube, Solar Cells. Theory and Experiment. Energoizdat, Moscow, 1987 (in Russian).
97.
M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell
efficiency tables (version 36) . Progress in Photovoltaics: Research
and Applications, 18, p. 346-352 (2010). https://doi.org/10.1002/pip.1021
98.
M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar
cell efficiency tables (version 39) . Progress in Photovoltaics:
Research and Applications, 20, p. 12-20 (2012). https://doi.org/10.1002/pip.2163
99.
R.R. King, D.C. Law, K.M. Edmondson, et al., Advances in
high-efficiency III-V multijunction solar cells . Advances in
OptoElectronics, 2007, 8 pages (2007).
100.
B. Mitchell, G. Peharz, G. Siefer et al., Four-junction spectral
beam-splitting photovoltaic receiver with high optical efficiency .
Progress in Photovoltaics: Research and Applications, 19(1), p. 61-72
(2011). https://doi.org/10.1002/pip.988