Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. V. 16, N 1. P. 001-017.
DOI: https://doi.org/10.15407/spqeo16.01.001/


References

1.    P.T. Landsberg, V. Badescu, Solar energy conversion: list of efficiencies and some theoretical considerations. Part I – Theoretical considerations . Progress in Quantum Electronics, 22(4), p. 211-230 (July 1998).
https://doi.org/10.1016/S0079-6727(98)00012-3
 
2.    P.T. Landsberg, V. Badescu, Solar energy conversion: List of efficiencies and some theoretical considerations. Part II – Results . Progress in Quantum Electronics, 22(4), p. 231-255 (July 1998).
https://doi.org/10.1016/S0079-6727(98)00013-5
 
3.    V.A. Green, Third Generation Photovoltaic: Advanced Solar Energy. Springer, New York, 2003.
 
4.    W. Shockley and H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells . J. Appl. Phys. 32(3), p. 510-519 (1961).
https://doi.org/10.1063/1.1736034
 
5.    C.H. Henry, Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells . J. Appl. Phys., 51, p. 4494 (1980).
https://doi.org/10.1063/1.328272
 
6.    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 37) . Progress in Photovoltaics: Research and Applications, 19, p. 84-92 (2011).
https://doi.org/10.1002/pip.1088
 
7.    S. Yoon, V. Garboushian, D. Roubideaux, Reduced temperature dependence of high-concentration photovoltaic solar cell open-circuit voltage (Voc) at high concentration levels . IEEE First World Conf. on Photovoltaic Energy Conversion, Conference Record of the 24th IEEE Photovoltaic Specialists Conf., vol. 2, p. 1500-1504 (1994).
 
8.    A.Q. Malik, Lim Chee Ming, Tan Kha Sheng and M. Blundell, Influence of temperature on the performance of photovoltaic polycrystalline silicon module in the Bruneian climate . ASEAN J. on Science & Technology for Development (AJSTD), 26(2), p. 61-72 (2010).
 
9.    G. Landis, D. Merritt, R.P. Raffaelle, D. Scheiman, High-temperature solar cell development . 18th Space Photovoltaic Research and Technology Conf., p. 241-247 (2005). Report number: NASA/CP-2005-213431.
 
10.    Photovoltaics take a load off soldiers . http/www.solar.udel.edu/CSOctSOL-Darpa-reprint.pdf.
 
11.    A. Barnett, C. Honsberg, D. Kirkpatrick, et al., 50% efficient solar cell architecture and designs . IEEE 4th Word Conf. Photovoltaic Energy Conversion. vol. 2, p. 2560-2564 (2006).
 
12.    A. Barnett, D. Kirkpatrick, C. Honsberg et al., Milestones toward 50% efficient solar cell modules . 22nd Europ. Photovoltaic Solar Energy Conf., Milan, Italy, September 3, 2007, p. .
 
13.    D.A. Caselli, C.Z. Ning, High-performance laterally-arranged multiple bandgap solar cells using spatially compositiongraded nanowires on a single substrate: a design study . Opt. Exp. 19(S4), p. A686-A6944 (July 2011);
https://doi.org/10.1364/OE.19.00A686
 
J.I. Alferov, V.M. Andreev, V.D. Rumiantsev Tendencies and perspectives development of solar photo energetics . Fizika i teknika poluprovodnikov, 38(8), p. 937-947 (2004), in Russian.
 
14.    B. Mitchell, G. Peharz, G. Siefer et al., Four-junction spectral beam-splitting photovoltaic receiver with high optical efficiency . Progress in Photovoltaics: Research and Applications, 19, p. 61-72 (2011).
https://doi.org/10.1002/pip.988
 
15.    U. Caglar, Studies of printing technology with focus on electronic materials . Thesis for the degree of Doctor of Technology. Tampere University of Technology. Tampere, Finland, 2009.
 
16.    O. Azucena, J. Kubby, D. Scarbrough, C. Goldsmith, Inkjet printing of passive microwave circuitry . Microwave Symposium Digest 2006 IEEE MTT-S Intern. p. 1075-1078 (2008).
 
17.    S.B. Fuller, E.J. Wilhelm, J.M. Jacobson, Ink-jet printed nanoparticle microelectromechanical systems . J. Microelectromech. Systems, 11(1), p. 1-7 (February 2002).
https://doi.org/10.1109/84.982863
 
18.    A. Gopal, K. Hoshino, S. Kim, X. Zhang, Microcontact printing of multicolor quantum dots light emitting diode on silicon . Conf. on Lasers and Electro-Optics, Baltimore, Maryland, USA (2009), p. .
 
19.    A. Kamyshny, J. Steinke, S. Magdassi, Metal-based inkjet inks for printed electronics . The Open Appl. Phys. J., 4, p. 19-36 (2011).
 
20.    T. Kaydanova, A. Miedaner, C. Curtis, J. Perkins, J. Alleman, D. Ginley, Ink jet printing approaches to solar cell contacts . National Center for Photovoltaics and Solar Program Review Meeting, Denver, Colorado March 24-26, 2003.
 
21.    A. Mokri, M. Emziane, Beam-splitting versus tandem cell approaches for converting the solar spectrum into electricity: A comparative study . Intern. Renewable Energy Congress IREC2010, Sousse, Tunisia, November 5-7, 2010, p. .
 
22.    K. Xiong, S. Lu, J. Dong, T. Zhou, D. Jiang, R. Wang, H. Yang, Light-splitting photovoltaic system utilizing two dual-junction solar cells . Solar Energy, 84, p. 1975-1978 (2010).
https://doi.org/10.1016/j.solener.2010.10.011
 
23.    Dichroic laser mirrors. The unitary enterprise of "Aksikon", National Academy of Sciences of Republic of Belarus, Minsk (2002).
 
24.    Volume Phase Gratings (VPGTM) . ® BaySpec, Inc. White Paper. 11/20/2002, p. .
 
25.    J.E. Ludman, Photovoltaic Systems Based on Spectrally Selective Holographic Concentrators . Final Report for Period May 1991 to December 1991. Aero Propulsion @ Power Directorate Wright Laboratory Air Force Materiel Command Wright Patterson Air Force Base, Ohio 45433-6563.
 
26.    M. Aiko, Hyperspectral prism-grating-prism imaging spectrograph . Technical research centre of Finland. Finland, ESPOO 2001, p. .
 
27.    S.C. Barden, J.A. Arns, W.S. Colburn, Volume-phase holographic gratings and their potential for astronomical applications, in: Optical Astronomical Instrumentation, Ed. S. D'Odorico . Proc. SPIE, 3355, p. 866 (1998).
https://doi.org/10.1117/12.316806
 
28.    P.-A. Blanche, P. Gailly, S. Habraken, P. Lemaire, C. Jamar, Volume phase holographic gratings: large size and high diffraction efficiency . Opt. Eng. 43(11), p. 2603-2612 (2004).
https://doi.org/10.1117/1.1803557
 
29.    Introduction to Diffraction Grating – thorlabs.com . www.thorlabs.com.
 
30.    P.D. Maker, R.E. Muller, D.W. Wilson, P. Mouroulis, New convex grating types manufactured by electron beam lithography . Diffractive Optics and Micro-Optics, 10, p. 234-236 (1998).
 
31.    C. Palmer, Diffraction Grating, Handbook. Sixth edition. Newport Corporation, 2005.
 
32.    Scientific diffraction grating/Castom grating. Product catalog and capabilities . www.jobinyvon.com
 
33.    M.T. Gale, C. Gimkiewicz, S. Obi, M. Schnieper, J. Sochtig, H. Thiele, S. Westenhofer, Replication technology for optical microsystems . Opt. and Lasers in Eng. 43, p 373-386 (2005).
https://doi.org/10.1016/j.optlaseng.2004.02.007
 
34.    J.Y. Kim, N.B. Brauer, V. Fakhfouri, D.L. Boiko, E. Charbon, G. Grutzner, J. Brugger, Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique . Opt. Mater. Exp. 1(2), p. 259-269 (2011).
https://doi.org/10.1364/OME.1.000259
 
35.    E. Brinksmeier, A. Gessenharter, D. Pérez, J. Blen, P. Benítez, V. Díaz, J. Alonso, Design and manufacture of aspheric lenses for novel high efficient photovoltaic concentrator modules . Proc. ASPE 19th Annual Meeting, Orlando, Florida, USA, October 24-20, 2004, p. 582-585.
 
36.    T. Kirchartz, Generalized detailed balance theory of solar cells . Von der Fakultat fur Elektrotechnik und Informationstechnik der Rheinisch-Westf¨alischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation. 6 Februar 2009, p. .
 
37.    I.P. Suzdalev, Nanotechnology: Physics-Chemistry of Nanoclusters, Nanostructures and Nanomatters. KomKniga, Moscow, 2006 (in Russian).
 
38.    P. Buffat, J.P. Borel, Size effect on the melting temperature of gold particles . Phys. Rev. A, 13, p. 2287-2298 (1976).
https://doi.org/10.1103/PhysRevA.13.2287
 
39.    J. Yanfeng, Z. Yamin, Influence of gold particle size on melting temperature of VLS grown silicon nanowire . J. Semiconductors, 31(1), 012002-1 – 012002-5 (2010).
 
40.    G. Guisbiers, S. Pereira, Theoretical investigation of size and shape effects on the melting temperature of ZnO nanostructures . Nanotechnology, 18, 435710 (6p.), (2007).
 
41.    G. Schmid, B. Corain, Nanoparticulated Gold: Syntheses, Structures, Electronics, and Reactivities . Eur. J. Inorg. Chem. 17, p. 3081-3098 (2003).
https://doi.org/10.1002/ejic.200300187
 
42.    Z. Radivojevic, K. Andersson, K. Hashizume, M. Heino, M. Mantysalo, P. Mansikkamaki, Y. Matsuba, N. Terada, Optimised curing of silver ink jet based printed traces . Dans Proc. 12th Intern. Workshop on Thermal Investigations of ICs – THERMINIC 2006, Nice, France (2006). arXiv:0709.1842 [cond-mat.mtrl-sci].
 
43.    J. Sun, S.L. Simona, The melting behavior of aluminum nanoparticles . Thermochimica Acta, 463, p. 32-40 (2007).
https://doi.org/10.1016/j.tca.2007.07.007
 
44.    G. Guisbiers, G. Abudukelimu, D. Hourlier, Size-dependent catalytic and melting properties of platinum-palladium nanoparticles . Nanoscale Res. Lett. 6(1), p. 396 (2011).
https://doi.org/10.1186/1556-276X-6-396
 
45.    S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, L.H. Allen, Size-dependent melting properties of small tin particles: Nanocalorimetric measurements . Phys. Rev. Lett. 77(1), p. 99-102 (1 July 1996).
https://doi.org/10.1103/PhysRevLett.77.99
 
46.    S. Griffith, Towards personal fabricators: Tabletop tools for micron and sub-micron scale functional rapid prototyping . Thesis degree of Master of Science in Media Arts and Sciences at the Massachusetts Institute of Technology, February 2001.
 
47.    M.F.A.M. van Hest, C.J. Curtis, A. Miedaner, R.M. Pasquarelli, T. Kaydanova, P. Hersh, and D.S. Ginley, Direct-write contacts: Metallization and contact formation . 33rd IEEE Photovoltaic Specialists Conf., San Diego, California, May 11-16, 2008.
https://doi.org/10.1109/pvsc.2008.4922798
 
48.    A. Mette, New Concepts for Front Side Metallization of Industrial Silicon Solar Cells . Dissertation zur Erlangung des Doktorgrades der Fakultät für Angewandte Wissenschaften der Albert-Ludwigs-Universität Freiburg im Breisgau, 2007.
 
49.    J. Perelaer, A.W.M. de Laat, C.E. Hendriksa, U.S. Schubert, Inkjet-printed silver tracks: low temperature curing and thermal stability investigation . J. Mater. Chem., 18, p. 3209-3215 (2008).
https://doi.org/10.1039/b720032c
 
50.    J. Perelaer, U.S. Schubert, Inkjet printing and alternative sintering of narrow conductive tracks on flexible substrates for plastic electronic applications . Radio Frequency Identification Fundamentals and Applications, Design Methods and Solutions. Ed. C. Turcu. INTECH, Croatia, downloaded from SCIYO.COM.

51.    J. Chung, S. Ko, C.P. Grigoropoulos, N.R. Bieri, C. Dockendorf, D. Poulikakos, Microconductors on polymer by nanoink printing and pulsed laser curing . Proc. HTFE'04 2004 ASME Heat Transfer/Fluids Eng. Summer Conf. Charlotte, North Carolina, July 11-15, 2004 HT-FED2004-56702.
https://doi.org/10.1115/ht-fed2004-56702
 
52.    M.L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanpera, M. Suhonen, H. Seppa, Electrical sintering of nanoparticle structures . Nanotechnology, 19, 175201 (2008).
https://doi.org/10.1088/0957-4484/19/17/175201
 
53.    J. Chung, S. Ko, C.P. Grigoropoulos, N.R. Bieri, C. Dockendorf, D. Poulikakos, Damage-free low temperature pulsed laser printing of gold nanoinks on polymers . J. Heat Transfer, 127, p. 724-732 (July 2005).
https://doi.org/10.1115/1.1924627
 
54.    S.M. Bidoki, D.M. Lewis, M. Clark, A. Vakorov, P.A. Millner, D. McGorman, Ink-jet fabrication of electronic components . J. Micromech. Microeng. 17, p. 967-974 (2007).
https://doi.org/10.1088/0960-1317/17/5/017
 
55.    C. Curtis, T. Rivkin, A. Miedaner, J. Alleman, J. Perkins, L. Smith, D. Ginley, Metallizations by direct-write inkjet printing. Preprint . NCPV Program Review Meeting, Lakewood, Colorado, October 2001, p. 14-17.
 
56.    J.S. Kang, J. Ryu, H.S. Kim, H.T. Hahn, Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light . J. Electron. Mater. 40(11), p. 2268-2277 (2011).
https://doi.org/10.1007/s11664-011-1711-0
 
57.    B.K. Parka, D. Kim, S. Jeong, J. Moon, J.S. Kim, Direct writing of copper conductive patterns by ink-jet printing . Thin Solid Films, 515, p. 7706-7711 (2007).
https://doi.org/10.1016/j.tsf.2006.11.142
 
58.    K.F. Teng, R.W. Vest, Application of inkjet technology on photovoltaic metallization . IEEE Electron. Device Lett. 9(11), p. 591-592 (1998).
https://doi.org/10.1109/55.9286
 
59.    Y. Qi, T. Cagin, Melting and crystallization in Ni nanoclusters: The mesoscale regime . J. Chem. Phys., 115(1), p. 385-3941 (July 2001).
https://doi.org/10.1063/1.1373664
 
60.    C.J. Curtis, M. van Hest, A. Miedaner, T. Kaydanova, L. Smith, and D.S. Ginley, Multi-layer inkjet printed contacts to Si . 2005 DOE Solar Energy Technologies Program Review Meeting, Denver, Colorado, November 7-10, 2005.
 
61.    H. Antoniadis, Silicon ink high efficency solar cells . 34th IEEE Photovoltaic Spesialists Conference (PVSC), Philadelphia, USA, 2009, p. .
 
62.    A. Gupta, A.S.G. Khalil, M. Winterer, H. Wiggers, Stable colloidal dispersion of luminescing silicon nanoparticles for ink-jet printing . Nanotechnology, 2, p. 538-541 (2010).
 
63.    J.P. Borah, J. Barman, K.C. Sarma, Structural and optical properties of ZnS nanoparticles . Chalcogenide Lett. 5(9), p. 201-208 (2008).
 
64.    J.H. Johnston, A.C. Smalla, N. Clarkb, Colour tuneable photoluminescent quantum dots for ink-jet printing of security documents and labels . Chemistry in New Zealand, 74, p. 70-71 (April 2010).
 
65.    Hao Wei, Meng Li, Zichao Ye, Zhi Yang, Yafei Zhang, Novel Ga-doped ZnO nanocrystal ink: Synthesis and characterization . Mater. Lett. 65, p. 427-429 (2011).
https://doi.org/10.1016/j.matlet.2010.10.084
 
66.    S.T. Meyers, J.T. Anderson, C.M. Hung, J. Thompson, J.F. Wager, D.A. Keszler, Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs . J. Amer. Chem. Soc. 130, p. 17603-17609 (2008).
https://doi.org/10.1021/ja808243k
 
67.    M. Shakira, Siddhartha, G. Bhagavannarayana, M.A. Wahab, Structural, optical and electrical properties of ZnSe semiconductor nanoparticles . Chalcogenide Lett. 8(7), p. 435-440 (2011).
 
68.    G. Fracasso, Synthesis and physical-chemical characterization of metallic nanoparticles . Dottorato di Ricerca in Scienze Chimiche Ciclo XXII. Università di Bologna. 2010.
 
69.    C. Dwivedi, C.P. Shah, K. Singh, M. Kumar, P.N. Bajaj, An organic acid-induced synthesis and characterization of selenium nanoparticles . J. Nanotechnology, 2011, Article ID 651971, 6 pages (2011).
 
70.    I.O. Oladeji, L. Chow, Synthesis and processing of CdS/ZnS multilayer films for solar cell application . Thin Solid Films, 474, p. 77-83 (2005).
https://doi.org/10.1016/j.tsf.2004.08.114
 
71.    N. Revaprasadu and S.N. Mlondo, Use of metal complexes to synthesize semiconductor nanoparticles . Pure Appl. Chem., 78(9), p. 1691-1702 (2006).
https://doi.org/10.1351/pac200678091691
 
72.    K. Yamada, K. Hoshino, K. Matsumoto, I. Shimoyama, Electro-static trapping and deposition of nanoparticles in a submicron narrow gap for a lateral-electrode LED . 17th IEEE Intern. Conf. (MEMS), Micro Electro Mechanical Systems 2004. p. 49-52 (2004).
 
73.    D.J. Suh, O.O. Park, H.-T. Jung, M.H. Kwon, Optical properties and characteristics of the CdSe nanoparticles synthesized at room temperature . Korean J. Chem. Eng. 19(3), p. 529-533 (2002).
https://doi.org/10.1007/BF02697168
 
74.    J. Smith, D. Mager, U. Loeffelmann, J.G. Korvink, Can inkjet printing produce MRI coils? . Proc. Int. Soc. Mag. Reson. Med. 16, p. 1126 (2008).
 
75.    Y. Liu, W. Chen, A.G. Joly, Y. Wang, C. Pope, Y. Zhang, J.-O. Bovin, P. Sherwood, Comparison of water-soluble CdTe nanoparticles synthesized in air and in nitrogen . J. Phys. Chem. B, 110(34), p. 16992-17000 (2006).
https://doi.org/10.1021/jp063085k
 
76.    S.S. Kher, R.L. Wells, New method for the synthesis of nanocrystalline gallium arsenide and gallium phosphide . J. Chem. Mater. 6(11), p. 2056-2062 (1994).
https://doi.org/10.1021/cm00047a027
 
77.    M.A. Malik, P. O'Brien, S. Norager and J. Smith, Gallium arsenide nanoparticles: Synthesis and characterisation . J. Mater. Chem., 13, p. 2591-2595 (2003).
https://doi.org/10.1039/b305860n
 
78.    S. Schulz, The chemistry of group 13/15 compounds (III–V compounds) with the higher homologues of group 15, Sb and Bi . Coordination Chem. Rev. 215, p. 1-37 (2001).
https://doi.org/10.1016/S0010-8545(00)00401-X
 
79.    H. Lee, M.G. Kim, C.H. Choi, Y.-K. Sun, C.S. Yoon, J. Cho, Surface-stabilized amorphous germanium nanoparticles for lithium-storage material . J. Phys. Chem. B, 109, p. 20719-20723 (2005).
https://doi.org/10.1021/jp052620y
 
80.    Reference Book on Electrical Engineerings Materials. Eds. Yu.V. Koritskii, A.A. Pasynkov, B.M. Tareev. Vol. 2. Energoizdat, Moscow, 1987 (in Russian).
 
81.    A. Costello, D. Doherty, J. LeBeau, R. Warren, Multilayer polymer inkjet printing. Report for a major qualifying project . Worcester Polytechnic Institute, England (2010).
 
82.    S.K. Bleech, M. Santos 3D Polymer Printing with Desktop Inkjet Technology. A major qualifying project report . Worcester Polytechnic Institute, England (2009).
 
83.    J. Perelaer, P. Kröber, J.T. Delaney, U.S. Schubert, Fabrication of two and three-dimensional structures by using inkjet printing . NIP25 and Digital Fabrication (2009), p. 791-794.
 
84.    R.Y. Utama, Inkjet printing for commercial high-efficiency silicon solar cells. Dissertation Sheet of PhD in Photovoltaic Engineering . ARC Centre of Excellence for Advanced Photovoltaics and Photonics, University of New South Wales Sydney, Australia, March 2009.
 
85.    E. Tekin, Thin film libraries of functional polymers and materials prepared by inkjet printing . Eindhoven, Technische Universiteit Eindhoven, 2007.
 
86.    S. Liker, Use of stainless steel piezo inkjet printheads to enable jetting of aggressive etchants for improved solar PV cell processing . Trident-ITW Trident Solar Division, 8 Sept. 2009.
 
87.    256Jet-S Printhead . Information from Trident Industrial Ink Jet, 1114 Federal Road Industrial Park Drive, Brookfield, Connecticut, USA.
 
88.    Yuan Zhao, Ming-Yu Sheng, Wei-Xi Zhou et al., A solar photovoltaic system with ideal efficiency close to the theoretical limit . Opt. Exp. A, 20(S1), p. A28-A38 (2012).
https://doi.org/10.1364/OE.20.000A28
 
89.    N.V. Yastrebova, High-efficiency multi-junction solar cells: Current status and future potential . Centre for Research in Photonics, University of Ottawa, Canada, April 2007.
 
90.    J.M. Olson, D.J. Friedman, and S. Kurtz, High-efficiency III-V multijunction solar cells . Handbook of Photovoltaic Science and Engineering. Eds. A. Luque and S. Hegedus. John Wiley & Sons, 2003.
 
91.    H. Antoniadis, High efficiency, low cost solar cells manufactured using 'Silicon Ink' on thin crystalline silicon wafers . Innovalight DOE report (2011), 41 p.
 
92.    T. Kaydanova, M.F.A.M. van Hest, A. Miedaner et al., Direct write contacts for solar cells . 31st IEEE Photovoltaics Specialists Conf. and Exhibition, Lake Buena Vista, Florida, January 3-7, 2005.
https://doi.org/10.1109/pvsc.2005.1488380
 
93.    T. Rivkin, C. Curtis, A. Miedaner, J. Perkins, J. Alleman, D. Ginley Direct write processing for photovoltaic cells . 12th Workshop on Crystalline Silicon Solar Cell Materials and Processes, August 2002, p. 223-226 (2002).
https://doi.org/10.1109/pvsc.2002.1190854
 
94.    R. Pasquarelli, C. Curtis, M. van Hest, Inkjet printing of nickel and silver metal solar cell contacts . J. Undergraduate Res. 8, p. 91-96 (2008).
 
95.    V.M. Andreev, V.V. Evstropov, V.C. Kalinovskii, V.M. Lantratov, V.P. Hvostikov, Current passage and potential efficiency of sun elements on the basis of p-n-transitions from GaAs and GaSb . Fizika i teknika poluprovodnikov, 43(5), p. 671-678 (2009), in Russian.
 
96.    A. Farenbruh, R. Bube, Solar Cells. Theory and Experiment. Energoizdat, Moscow, 1987 (in Russian).
 
97.    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 36) . Progress in Photovoltaics: Research and Applications, 18, p. 346-352 (2010).
https://doi.org/10.1002/pip.1021
 
98.    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 39) . Progress in Photovoltaics: Research and Applications, 20, p. 12-20 (2012).
https://doi.org/10.1002/pip.2163
 
99.    R.R. King, D.C. Law, K.M. Edmondson, et al., Advances in high-efficiency III-V multijunction solar cells . Advances in OptoElectronics, 2007, 8 pages (2007).
 
100.    B. Mitchell, G. Peharz, G. Siefer et al., Four-junction spectral beam-splitting photovoltaic receiver with high optical efficiency . Progress in Photovoltaics: Research and Applications, 19(1), p. 61-72 (2011).
https://doi.org/10.1002/pip.988