Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. V. 16, N 1. P. 018-026.
DOI: https://doi.org/10.15407/spqeo16.01.018/


References

1. W. Knap, H. Alause, J.M. Bluet, J. Camassel, J. Young, M. Asif Khan, Q. Chen, S. Huant, M. Shur, The cyclotron resonance effective mass of two-dimensional electrons confined at the GaN/AlGaN interface . Solid State Communs. 99(3), p. 195-199 (1996).
https://doi.org/10.1016/0038-1098(96)00232-3
 
2. Xiaoguang Wu and F.M. Peeters, Cyclotron-resonance mass of two-dimensional electrons in heterostructures . Phys. Rev. B, 55(23), p. 15438-15440 (1997).
https://doi.org/10.1103/PhysRevB.55.15438
 
3. W. Knap, S. Contreras, H. Alause, C. Skierbiszewski, J. Camassel et al., Cyclotron resonance and quantum Hall effect studies of the two-dimensional electron gas confined at the GaN/AlGaN interface . Appl. Phys. Lett. 70, p. 2123-2125 (1997).
https://doi.org/10.1063/1.118967
 
4. M. Drechsler, D.M. Hofmann, B.K. Meyer, T. Detchprohm, H. Amano and I. Akasaki, Determination of the conduction band electron effective mass in hexagonal GaN . Jpn. J. Appl. Phys. 34, p. L1178-L1179 (1995).
https://doi.org/10.1143/JJAP.34.L1178
 
5. Z.-F. Li, W. Lu, S.C. Shen, S. Holland, C.M. Hu et al., Cyclotron resonance and magnetotransport measurements in heterostructures for x = 0.15-0.30 . Appl. Phys. Lett. 80(3), p. 431-433(2002).
https://doi.org/10.1063/1.1435074
 
6. S. Syed, M.J. Manfra, Y.J. Wang, R.J. Molnar and H.L. Stormer, Electron scattering in AlGaN/GaN structures . Appl. Phys. Lett. 84(9), p. 1507-1509 (2004).
https://doi.org/10.1063/1.1655704
 
7. A. Wolos, W. Jantsch, K. Dybko and Z. Wilamowski, C. Skierbiszewski, Plasmon-cyclotron resonance in two-dimensional electron gas confined at the interface . Phys. Rev. B, 76, 045301 (2007).
https://doi.org/10.1103/PhysRevB.76.045301
 
8. E. Starikov, P. Shiktorov, V. Gruzinskis, L. Reggiani, L. Varani, J.C. Vaissiere and Jian H. Zhao, Monte Carlo simulation of the generation of terahertz radiation in GaN. J. Appl. Phys. 89(2), p. 1161-1171 (2001);
https://doi.org/10.1063/1.1334924
 
E.A. Barry, K.W. Kim, and V.A. Kochelap, Group-III nitrides hot electron effects in moderate electric fields . Phys. Status Solidi (B), 228(2), p. 571-574 (2001).
https://doi.org/10.1002/1521-3951(200111)228:2<571::AID-PSSB571>3.0.CO;2-I
 
9. G.I. Syngayivska and V.V. Korotyeyev, Monte Carlo simulation of hot electron effects in compensated GaN semiconductor at moderate electric fields . Semiconductor Physics, Quantum Electronics & Optoelectronics, 10(4), p. 54-59 (2007).
 
10. V.V. Korotyeyev, V.A. Kochelap, K.W. Kim and D.L. Woolard, Streaming distribution of two-dimensional electrons in III-N heterostructures for electrically pumped terahertz generation . Appl. Phys. Lett. 82, p. 2643-2645 (2003);
https://doi.org/10.1063/1.1569039
 
K.W. Kim, V.V. Korotyeyev, V.A. Kochelap, A.A. Klimov, and D.L. Woolard, Tunable terahertz-frequency resonances and negative dynamic conductivity of two-dimensional electrons in group-III nitrides . J. Appl. Phys. 96, p. 6488-6491 (2004).
https://doi.org/10.1063/1.1811388
 
11. E. Starikov, P. Shiktorov, V. Gruzinskis, L. Varani, C. Palermo, J.-F. Millithaler and L. Regiani, Frequency limits of terahertz radiation generated by optical-phonon transit-time resonance in quantum wells and heterolayers . Phys. Rev. B, 76, 045333 (2007);
https://doi.org/10.1103/PhysRevB.76.045333
 
Terahertz generation in nitrides due to transit-time resonance assisted by optical phonon emission . J. Phys: Condens. Matter, 20(38), 384209 (2008).
https://doi.org/10.1088/0953-8984/20/38/384209
 
12. T. Laurent, R. Sharma, J. Torres, P. Nouvel, S. Blin, L. Varani, Y. Cordier, M. Chmielowska, S. Chenot, J.-P. Faurie, B. Beaumont, P. Shiktorov, E. Starikov, V. Gruzinskis, V.V. Korotyeyev, and V.A. Kochelap, Voltage-controlled sub-terahertz radiation transmission through GaN quantum well structure . Appl. Phys. Lett. 99, 082101 (2011).
https://doi.org/10.1063/1.3627183
 
13. G.I. Syngayivska, V.V. Korotyeyev, Electrical and high-frequency properties of compensated GaN under electron streaming conditions. Ukrainian Journal of Physics, 58 (1), p. 40-55 (2013).
https://doi.org/10.15407/ujpe58.01.0040
 
14. D.C. Look and J.R. Sizelove, Predicted maximum mobility in bulk GaN . Appl. Phys. Lett. 79(8), p. 1133-1135 (2001).
https://doi.org/10.1063/1.1394954
 
15. L. Ren, C.L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R.H. Hauge, and J. Kono, Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks . Nano Lett., 12, p. 787-790 (2012).
https://doi.org/10.1021/nl203783q
 
16. J.T. Lu, J.C. Cao, and S.L. Feng, Hot-electron dynamics and terahertz generation in GaN quantum wells in the streaming transport regime . Phys. Rev. B, 73, 195326 (2006).
https://doi.org/10.1103/PhysRevB.73.195326