Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. V. 16, N 1. P. 048-054.
DOI: https://doi.org/10.15407/spqeo16.01.048


References

1. B.T. Ahn and R.A. Huggins, Preparation, structures and conductivities of Li2SiS3 phases. Mat. Res. Bull. 25, p. 381-389 (1990).
https://doi.org/10.1016/0025-5408(90)90111-E
 
2. B.T. Ahn and R.A. Huggins, Phase behavior and conductivity of Li2SiS3 composition. Solid State Ionics, 46, p. 237-242 (1991).
https://doi.org/10.1016/0167-2738(91)90221-V
 
3. B.T. Ahn and R.A. Huggins, Synthesis and lithium conductivities of Li2SiS3 and Li4SiS4. Mat. Res. Bull. 24, p. 889-897 (1989).
https://doi.org/10.1016/0025-5408(89)90053-6
 
4. K. Muruganandam and M. Seshasayee, Structural investigation of Li2SiS3 glass using X-ray RDF. Solid State Communs. 95, p. 499-502 (1995).
https://doi.org/10.1016/0038-1098(95)00317-7
 
5. D.L. Price and A.J.G. Ellison, Atomic structure and dynamics of fast-ion conducting glasses. J. Non-Cryst. Solids, 177, p. 293-298 (1994).
https://doi.org/10.1016/0022-3093(94)90543-6
 
6. S.R. Elliott, Isotopic-substitution neutron diffraction as a probe of the structural environment of cations in superionic glasses. Solid State Ionics, 105, p. 39-45 (1998).
https://doi.org/10.1016/S0167-2738(97)00447-5
 
7. A. Pradel and M. Ribes, Lithium chalcogenide conductive glasses. Mat. Chem. Phys. 23, p. 121-142 (1989).
https://doi.org/10.1016/0254-0584(89)90021-7
 
8. J.H. Kennedy and Y. Yang, Glass-forming region and structure in SiS2–Li2S–Lix (x = Br, I). J. Solid State Chem. 69, p. 252-257 (1987).
https://doi.org/10.1016/0022-4596(87)90081-8
 
9. H. Eckert, Z. Zhang and J.H. Kennedy, Glass formation in non-oxide chalcogenide systems. Structural elucidation of Li2S–SiS2–LiI solid electrolytes by quantitative 29Si, 6Li and 7Li high resolution solid state NMR methods. J. Non-Cryst. Solids, 107, p. 271-282 (1989).
https://doi.org/10.1016/0022-3093(89)90472-9
 
10. A. Pradel, G. Taillades, M. Ribes and H. Eckert, Eckert H. 29Si NMR structural studies of ionically conductive silicon chalcogenide glasses and model compounds. J. Non-Cryst. Solids, 188, p. 75-86 (1995).
https://doi.org/10.1016/0022-3093(94)00662-8
 
11. A. Pradel and M. Ribes, Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching. Solid State Ionics, 18-19, p. 351-355 (1986).
https://doi.org/10.1016/0167-2738(86)90139-6
 
12. S. Sahami, S.W. Shea and J.H. Kennedy, Preparation and conductivity measurements of SiS2-Li2S-LiBr lithium ion conductive glasses. J. Electrochem. Soc. 132, p. 985-–986 (1985).
https://doi.org/10.1149/1.2114001
 
13. S. Kondo, K. Takada and Y. Yamamura, New lithium ion conductors based on Li2S-SiS2 system. Solid State Ionics, 53-56, p. 1183-1186 (1992).
https://doi.org/10.1016/0167-2738(92)90310-L
 
14. N. Aotani, K. Iwamoto, K. Takada and S. Kondo, Synthesis and electrochemical properties of lithium ion conductive glass, Li3PO4–Li2S–SiS2. Solid State Ionics, 68, p. 35-39 (1994).
https://doi.org/10.1016/0167-2738(94)90232-1
 
15. D.I. Bletskan, N.V. Polazhinets and D.V. Chepur, Photoelectric properties of crystalline and glassy GeSe2. Fizika i tekhnika poluprov. 18, p. 223-228 (1984), in Russian.
 
16. K.-F. Hesse, Refinement of the crystal structure of lithium polysilicate. Acta Crystallogr. B, 33, p. 901-902 (1977).
https://doi.org/10.1107/S0567740877004932
 
17. P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. B, 136, p. 864-871 (1964).
https://doi.org/10.1103/PhysRev.136.B864
 
18. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. A, 140, p. 1133-1138 (1965).
https://doi.org/10.1103/PhysRev.140.A1133
 
19. D.M. Ceperley and B.J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, p. 566-569 (1980).
https://doi.org/10.1103/PhysRevLett.45.566
 
20. J.P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23, p. 5048-5079 (1981).
https://doi.org/10.1103/PhysRevB.23.5048
 
21. J.M. Soler, E. Artacho, J.D. Gale, A. Garcıa, J. Junquera, P. Ordejon and D. Sanchez-Portal, The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter. 14, p. 2745-2779 (2002).
https://doi.org/10.1088/0953-8984/14/11/302
 
22. http://www.icmab.es/siesta-joomla
 
23. G.B. Bachelet, D.R. Hamann and M. Schlüter, Pseudopotentials that work: From H to Pu. Phys. Rev. B, 26, p. 4199-4228 (1982).
https://doi.org/10.1103/PhysRevB.26.4199
 
24. C. Hartwigsen, S. Goedecker and J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B, 58, p. 3641-3662 (1998).
https://doi.org/10.1103/PhysRevB.58.3641
 
25. D.J. Chadi and M.L. Cohen, Special points in the Brillouin zone. Phys. Rev. B, 8, p. 5747-5753 (1973).
https://doi.org/10.1103/PhysRevB.8.5747
 
26. H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B, 13, p. 5188-5192 (1976).
https://doi.org/10.1103/PhysRevB.13.5188
 
27. D. Foix, H. Martinez, A. Pradel, M. Ribes and D. Gonbeau, XPS valence band spectra and theoretical calculations for investigations on thiogermanate and thiosilicate glasses. Chem. Phys. 323, p. 606-616 (2006).
https://doi.org/10.1016/j.chemphys.2005.10.037
 
28. M.L. Cohen, Electronic charge densities in semi-conductors. Science, 179, p. 1189-1195 (1973).
https://doi.org/10.1126/science.179.4079.1189