Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. V. 16, N 1. P. 086-090.
References 1. R. Collins, P.M. Fauchet, and M.A. Tischler, Porous silicon: From luminescence to LEDs. Phys. Today, 50, p. 24 (1997).https://doi.org/10.1063/1.881650 2. K.D. Hirschman, L. Tsybeskov, S.P. Duttagupta, and P.M. Fauchet, Silicon-based visible light-emitting devices integrated into microelectronic circuits. Nature, 384, p. 338 (1996). https://doi.org/10.1038/384338a0 3. Z. Huang, James E. Carey, Mingguo Liu, Xiangyi Guo, Eric Mazur, Joe C. Campbell, Microstructured silicon photodetector. Appl. Phys. Lett. 89, 033506 (2006). https://doi.org/10.1063/1.2227629 4. S. Park, E. Cho, D. Song, G. Conibeer, M.A. Green, n-type silicon quantum dots and p-type crystalline silicon heteroface solar cells. Solar Energy Materials and Solar Cells, 93(6-7), p. 684 (2009). https://doi.org/10.1016/j.solmat.2008.09.032 5. Md.N. Islam, Satyendra Kumar, Influence of surface states on the photoluminescence from silicon nanostructures. J. Appl. Phys. 93, p. 1753 (2003). https://doi.org/10.1063/1.1535254 6. X.X. Wang, J.G. Zhang, L. Ding, B.W. Cheng, W.K. Ge, J.Z. Yu, and Q.M. Wang, Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix. Phys. Rev. B, 72, 195313 (2005). https://doi.org/10.1103/PhysRevB.72.195313 7. M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan and C. Delerue, Electronic states and luminescence in porous silicon quantum dots: The role of oxygen. Phys. Rev. Lett. 82, p. 197 (1999). https://doi.org/10.1103/PhysRevLett.82.197 8. A.S. Nikolenko, M.V. Sopinskyy, V.V. Strelchuk, L.I. Veligura, V.V. Gomonovych, Raman study of Si nanoparticles formation in the annealed SiOx and SiOx:Er,F films on sapphire substrate. J. Opto-electron. and Adv. Mater. 14(1-2), p. 120 (2012). 9. S. Hernández, A. Martínez, P. Pellegrino, Y. Lebour, B. Garrido, E. Jordana, and J.M. Fedeli, Silicon nanocluster crystallization in SiOx films studied by Raman scattering. J. Appl. Phys. 104, 044304 (2008). https://doi.org/10.1063/1.2968244 10. T. Arguirov, T. Mchedlidze, M. Kittler, R. Rolver, B. Berghoff, M. Forst, B. Spangenberg, Residual stress in Si nanocrystals embedded in a SiO2 matrix. Appl. Phys. Lett. 89, 053111 (2006). https://doi.org/10.1063/1.2260825 11. G. Viera, S. Huet, L. Boufendi, Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy. J. Appl. Phys. 90(8), p. 4175 (2001). https://doi.org/10.1063/1.1398601 12. H. Richter, Z.P. Wang, and L. Ley, The one phonon Raman spectrum in microcrystalline silicon. Solid State Communs. 39(5), p. 625 (1981). https://doi.org/10.1016/0038-1098(81)90337-9 13. I.H. Campbel, P.M. Fauchet, The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Communs. 58(10), p. 739 (1984). https://doi.org/10.1016/0038-1098(86)90513-2 14. V. Poborchii, Tetsuya Tada, and Toshihiko Kanayama, Giant heating of Si nanoparticles by weak laser light: Optical microspectroscopic study and application to particle modification. J. Appl. Phys. 97, 104323 (2005). https://doi.org/10.1063/1.1904157 15. G. Faraci, Santo Gibilisco, Agata R. Pennisi, Superheating of silicon nanocrystals observed by Raman spectroscopy. Phys. Lett. A, 373, p. 3779 (2009). https://doi.org/10.1016/j.physleta.2009.07.072 16. J. Menendez, and M. Cardona, Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and a-Sn: Anharmonic effects. Phys. Rev. B, 29(4), p. 2051 (1984). https://doi.org/10.1103/PhysRevB.29.2051 17. T.R. Hart, R.L.A., and Benjamin Lax, Temperature dependence of Raman scattering in silicon. Phys. Rev. B, 1(2), p. 638 (1970). https://doi.org/10.1103/PhysRevB.1.638 18. M. Balkanski, R.F.W., and E. Haro, Anharmonic effects in light scattering due to optical phonons in silicon. Phys. Rev. B, 28(4), p. 1928 (1983). https://doi.org/10.1103/PhysRevB.28.1928 19. S.M. Sze, Physics of Semiconductor Devices. John Wiley and Sons, Inc, New York,1981. 20. M.E. Straumanis, E.Z. Aka, Lattice parameters, coefficients of thermal expansion, and atomic weights of purest silicon and germanium. J. Appl. Phys. 23, p. 330 (1952). https://doi.org/10.1063/1.1702202 21. R. Tubino, L. Piseri, G. Zerbi, Lattice dynamics and spectroscopic properties by a valence force potential of diamondlike crystals: C, Si, Ge and Sn. J. .Chem. Phys. 56(3), p. 1022 (1972). https://doi.org/10.1063/1.1677264 22. G. Lucovsky, J.C. Phillips, Interfacial strain-induced self-organization in semiconductor dielectric gate stacks. I. Strain relief at the Si–SiO2 interface. J. Vac. Sci. Technol. B, 22(4), p 2087 (2004). https://doi.org/10.1116/1.1771676 23. I. De Wolf, Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol. 11, p. 139-154 (1996). https://doi.org/10.1088/0268-1242/11/2/001 24. E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollak and M. Cardona, Effect of static uniaxial stress on the Raman spectrum of silicon. Solid State Communs. 8(2), p. 133 (1970). https://doi.org/10.1016/0038-1098(70)90588-0 25. R. Kumar, A.K. Shukla, Temperature dependent phonon confinement in silicon nanostructures. Phys. Lett. A, 373, p. 133 (2008). https://doi.org/10.1016/j.physleta.2008.10.090 26. P. Mishra, and K.P. Jain, Temperature-dependent Raman scattering studies in nanocrystalline silicon and finite-size effects. Phys. Rev. B, 62(22), p. 14790 (2000). https://doi.org/10.1103/PhysRevB.62.14790 27. X.X. Yang, Z.F. Zhou, Y. Wang, R. Jiang, W.T. Zheng, and Chang Q. Sun, Raman spectroscopy determination of the Debye temperature and atomic cohesive energy of CdS, CdSe, Bi2Se3, and Sb2Te3 nanostructures. J. Appl. Phys. 112, 083508 (2012). https://doi.org/10.1063/1.4759207 28. A.K. Shukla, Rajesh Kumar, and Vivek Kumar, Electronic Raman scattering in the laser-etched silicon nanostructures. J. Appl. Phys. 107, 014306 (2010). https://doi.org/10.1063/1.3271586 29. R. Gupta, Q. Xiong, C.K. Adu, U.J. Kim, and P.C. Eklund, Laser-induced Fano resonance scattering in silicon nanowires. Nano Lett. 3(5), p. 627 (2003). https://doi.org/10.1021/nl0341133 |