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1. Introduction

At present there exists a fixed notion of the mechanisms 
of current flow in ohmic metal-semiconductor contacts 
as well as the processes of minimization of contact 
resistivity and their contribution to the parameters of 
semiconductor devices and integrated circuits [1]. This 
notion asserts that contact resistivity ρс should be 
minimal and demonstrate thermal and electrical stability, 
and I – V curves of ohmic contacts must be linear and 
symmetric. As a rule, ρс of such contacts is described 
within either field emission (ρс does not depend on 
temperature) or thermofield emission (ρс decreases with 
temperature).

However, recent investigations [2-9] showed that in 
some cases ρс does not demonstrate the above behavior. 
To illustrate, for ohmic contacts to wide-gap 
semiconductors with high dislocation density it was 
shown in [2-4, 8, 9] that ρс increases with temperature. 

Such growing dependences ρс(Т) were obtained in [5-7] 
for ohmic contacts to lapped as well as polished n-Si, at 
presence of high density of structural defects in the Si 
near-contact region. In that case, calculation of the 
number of defects from etching pits made for lapped 
silicon gave ~107 cm–2. According to the model 
proposed in [7, 8], this value turned out sufficient for 
description of growing dependence ρс(Т).

Along with the above-mentioned, some other 
conditions of ohmic contact formation may lead to ρс
growth with temperature. For instance, use (as an ohmic 
contact) of an isotype n+-n junction (n+-n doping step) or 
p+-p junction – analog of metal-semiconductor contact in 
which degenerate n+-semiconductor (or p+-
semiconductor) acts as a metal. In this case, we deal 
practically with a Schottky diode without a potential 
barrier [10]. In what follows, we consider a model of 
such ohmic contact and its experimental testing.
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2. Model of ohmic contact with a doping step 

Let us consider a model of ohmic contact with an n+-n
doping step in the near-contact region, with electrons in 
the heavily doped n+-layer being degenerate. This 
situation is realized in manufacturing technology for 
silicon devices, in particular, IMPATT diodes. In that 
case, the thickness n

W  of the heavily doped region 

with electron concentration 
1n exceeds the Schottky 

layer thickness WSh, and the doping level is over the 
effective density of states Nc in the conduction band. Just 
this situation means that electrons in the heavily doped 
region are degenerate.

In this work, we made an analytical calculation of 
the ρc(T) curve for Si-based ohmic contacts with an n+-n
doping step in the limiting case when the contact band 
diagram is of the form shown in Fig. 1. One can see that 
the thickness n

W of the heavily doped region with 

electron concentration 
1n  exceeds the Schottky layer 

thickness WSh ( ShWW
n
 ), and the doping level 

exceeds the effective electron density of states in the 

conduction band Nc ( cNn 
1 ). This means that 

electrons in the heavily doped region are degenerate.
Figs 2a and 2b present band diagrams for contacts 

to Si with a doping step, at two values of heavily doped 
layer thickness n

W : 5 and 10 nm. In our calculations, 

we used the following values: 316
2 cm10 n , 

1n = 

2·1018, 5·1018, 1019, 2·1019 and 319 cm105  . To obtain 
the band diagrams, we solved the Poisson equations for 
the heavily doped and lightly doped regions (both with 
allowance made for electron degeneracy) of the form
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Here EF is the Fermi energy, Ea ≈ 0.005 eV, q –
elementary charge.

The barrier height at the contact (or, more exactly, 
the diffusion potential φc) was preset as 0.4 V. The 
electrostatic potential was considered to vanish as x. 
The solutions of the Poisson equation in the heavily and 

lightly doped regions were matched at the boundary 


n
Wx , that is to say, the values of potentials, as well 

as their derivatives (i.e., the electric field strengths), 
were matched, respectively.

Naturally all the 
1n  values taken for calculation 

obeyed the inequality cNn 
1 . However, since the 

Schottky layer thicknesses in the heavily doped region 
met the condition ShWW

n
  at all doping levels, there
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Fig. 1. Band diagram of ohmic contact with an n+-n doping 
step; n+~ 51020 cm–3; n ~ 1016 cm–3; Wn+~ 0.01 m.
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Fig. 2. Band diagrams of contacts with a doping step for Si at 
two thickness values of heavily doped layer Wn+: 5 nm (a) and 
10 nm (b); n+: 51019, 1020, 21020 and 51020 cm–3 at 
n2 = 1016 cm–3.
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was no portion of  x  independent from the coordinate 

x shown in Fig. 1.
One should note that, depending on the behavior of 

potential  x  in the near-contact region, the contact 

will be either rectifying (in the case of monotonic 
dependence of  x  on coordinate x) or ohmic (in the 

case of a strongly pronounced non-monotony of  x ). 

In the latter case, the contact resistivity may be presented 
as a sum of two terms (corresponding to series 
resistances):

21 ccc  . (3)

Here, ρc1 is the contact resistivity related to 
thermofield passage of electrons through the barrier at 
the interface between a heavily doped semiconductor 
and metal, and
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is the effective contact resistance of the lightly doped 
region in the limiting case of contact energy band being 
of the form shown in Fig. 1. Here k is the Boltzmann 
constant, A* – effective Richardson constant, μn –
electron mobility in the lightly doped region, 
LD = (ε0εs kT / 2q2n2)

0.5 – Debye shielding length for the 
lightly doped region. It should be noted that Eq. (4) was 
obtained with allowance made for the results of [10] and 
[11]: it takes into account both the diffusion and 
emission terms in the current flowing through the lightly 
doped region.

Thus, if the inequality ρc2 > ρc1 holds, then contact 
is purely ohmic. In that case, band bending in the lightly 
doped region is accumulation rather than depletion, so 
the total voltage applied to the contact is dropped across 
the neutral bulk, thus ensuring contact ohmicity. The
electron mobility μn in the region of light doping was 
calculated with allowance made for electron scattering 
by charged impurities as well as by intervalley and 
acoustic phonons [12]. It was assumed that dislocation 
density in the lightly doped region is sufficiently low 
and does not affect electron mobility. The expressions 
for μn calculation are given in [8].

Now let us dwell on an analysis of temperature 
dependence of contact resistivity ρc2. If the role of 
diffusion current is insignificant (that is to say, the 
inequality ((LD A*T) / (k μn Nc)) <1 holds), then one 
obtains with allowance made for Nc(T) = Nc0(T/300 K)3/2

that ρc2 ~ T , i.e., the contact resistivity grows with 

temperature as T . It was shown in [10] that the above 
inequality is valid at doping levels n2  1015 cm–3. At 
lower and intermediate doping levels, 
((LD A*T) / (k μn Nc)) ≥ 1, and (as analysis shows) the 
degree of ρc2 growth with temperature increases as 

compared with the law T .

Fig. 3 presents the theoretical ρc2(T) curves built 
using Eq. (4) as well as low-temperature freeze-out of 
electrons. The doping level serves as parameter of 
curves. At temperatures over 125 K, all curves grow 
with temperature (see curves 1-3). For the curve 1 (that 

corresponds to the lowest doping level of 314 cm10  ), the 
exponent of the power dependence ρc2(T) at room and 
elevated temperatures is maximal (equal to 2). As the 
doping level increases, that exponent goes down: it 

equals 1.1 at 315
2 cm10 n  and 0.8 at 316

2 cm10 n .

It should be noted that the above current 
mechanism (as well as that related to current flow 
through the metal shunts associated with dislocations –
see [7, 8]) ensures purely ohmic contact behavior. At the 
same time, the standard mechanism that describes 
slightly non-ohmic contact with low barrier height 
(about kT/q), as well as the thermofield mechanism of 
current flow, result in ohmic contact behavior only in the 
case that Rc  Rb (here Rc is the contact resistance, and 
Rb is the bulk resistance). Let us assume that the 
thermofield current component is predominant over wide 
ranges of doping levels and temperatures. Then, it is 
possible to use the following equation for determination 
of VI   curve for a contact of unit area:
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Here, Rtp = ρtp / S (where ρtp is contact resistivity at 
realization of thermofield mechanism of current flow 
through the contact), S is the contact area.
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Fig. 3. Theoretical c2(T) curves built using Eq. (4) (full 
curves) and with allowance made for low-temperature freeze-
out of electrons (dashed curves; n2, cm–3: 1 – 1014; 2 – 1015; 3 –
1016).
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By presenting the IV curve as
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it is easy to make certain that the second term on the 
right of Eq. (7) may be neglected as compared to the first 
one if Rtp<<Rb. To this end, as it follows from Eq. (7), 
the inequality J  JsT has to hold. Then, using the 
expression for JsT from Eq. (6), we obtain

b

tp

b R

R
VJ

R

V
VJ )()(  . (8)

One can see from this that condition for contact 
ohmicity is Rtp<<Rb.

3. Details of experiment

We studied two types of specimens, with an n+-n doping 
step formed either by phosphorus diffusion or ion 
implantation, at identical n-Si(111) wafers. The latter 
were cut out of the same ingot made by the Czochralski 
method. Their thickness and resistivity were ~420 m 
and ~4.6 cm, respectively. The wafers were subjected 
to chemo-dynamical polishing and surfaced according to 
the requirements of the 14th class.

Phosphorus diffusion from vapor phase was made 
at Т = 900 °С for 6 min. The depth of occurrence of the 
n+-layer was ~0.065 m; the donor concentration in the 

n+-layer was ~ 320 cm10  . Phosphorus ion implantation 
was made using a setup “Vesuvius–5”. The ion energy 
was ~60 keV; the dose was 103 C/cm2. Thermal 
annealing after ion implantation was made using a setup 
“SDOM 3–100” in oxygen atmosphere at Т = 850 °С for 
30 min. The depth of occurrence of the n+-layer was 
~0.06 m. The surface concentration of the dopant was 

~ 215cm10  .
To measure ρс(Т) over the 125–375 K temperature 

range, we made test structures with specimens of both 
types. The configuration of test structures corresponded 
to ρс measurement with the transmission line method 
(TLM) [13] that was used by us earlier in [5-8]. It 
enabled us to test ρс with allowance for either 
conduction in the n+-layer only (planar configuration of 
TLM structure) or through the n+-n doping step (vertical 
configuration of TLM structure). In the latter case, 
vertical TLM structure was made by n+-layer etching-off 
in gaps between the test pads to a depth of ~0.5 m and 
1 m, respectively, i.e., much over the thickness of n+-
layer.

Contact metallization Au(150 nm)–Ti(60 nm)–
Pd(20 nm)–n+-n was made using layer-by-layer vacuum 
sputtering of metals onto the Si substrate (heated to 
350 °С) with an n+-n doping step, in a single 
technological cycle, in an oilless vacuum (residual 

Fig. 4. SEM microphotograph of the cleavage of Au–Ti–Pd–
n+-n-Si contact structure for an n+-n doping step made using 
phosphorus diffusion.

Fig. 5. Same as in Fig. 4 but for an n+-n doping step made 
using phosphorus ion implantation.

pressure of ~ Pa105 4 ). The opposite wafer side was 
metallized in much the same way.

For contact structures of both configurations, the 
cleavage surface was studied using a high resolution 
scanning electron microscope (SEM) S–4800 (Hitachi, 
Japan). 
The SEM photographs of cleavages for Au–Ti–Pd–

nn - -Si structures with an n -layer prepared using 
phosphorus diffusion and ion implantation are shown in 
Figs 4 and 5, respectively. In both photographs, one can 

see n+-n doping steps with practically close n -layer 
thicknesses.

4. Experimental results: Comparison with the model

Shown in Fig. 6 are the dependences ρс(Т) measured 
over the 125–375 K temperature range for specimens of 
two types: 1) with an n+-n doping step obtained using 
phosphorus ion implantation into a silicon wafer 
(ρ ~4.6 cm) and 2) with an n+-n doping step obtained 
using phosphorus diffusion into the same Si wafer. The 
dependences ρс(Т) presented in Fig. 6 were measured in 

two ways: 1) at lateral current flow in the n -layer 
and 2) at vertical current flow through the n+-n doping 
step.
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One can see from Fig. 6 (curves 1 and 1) that, at 
current flow in the n+-layer (regardless of the way of its 
formation), the contact resistivity ρс grows with 
temperature but slightly (closely to dependence ρc~Т

0.1

or ρc~Т
0.2). The ρс value for the specimen with an ion-

implanted n+-layer is about 1/3 that for the specimen 
with n+-layer obtained using phosphorus diffusion. This 
may be owing to the known advantages of the ion 
implantation method over the diffusion one [14].

The theoretical temperature dependence of contact 
resistivity is shown in Fig. 6 (curve 2), while the 
experimental ρс(Т) curve (obtained for diffusion-doped 
structure) is presented in Fig. 6 (curve 3); both curves 
are given for vertical geometry of TLM structure. One 
can see that there is no agreement between the above 
two curves. In our opinion, the reason for this is related 
to pronounced difference between the shunt and contact 
resistances. In our case, the shunt resistance value RSh

exceeds that of contact resistance Rc = ρс / S (where S is 
the contact area) by more than two orders of magnitude. 
So, the relative error in determination of contact 
resistance Δρс /ρс with the Cox and Strack method [15] 
is close to 100%. The results of calculation for vertical 
geometry of TLM structure show that, to decrease the 
ratio RSh / Rc , one should use structures of smaller both 
diameter (~20 m) and thickness (≤10 m). This 
consideration will be taken into account later.

However, the principal result obtained in this 
work is that the ρс(Т) curves for vertical structures with 
a doping step are growing. This is related (as was 
showed above) to realization of accumulation band
bending in a lightly doped region at the interface 
between the silicon bulk and doping step. This means 
that in this case we deal with purely ohmic contacts for 
which linear dependence between the flowing current 
and applied voltage is obeyed at any temperatures, 
whatever the interrelation between the bulk and contact 
resistances.
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Fig. 6. Experimental temperature dependence of contact
resistivity (planar geometry of TLM structure): 1 – ion 
implanted n+-layer; 1 – diffusion-doped n+-layer; theoretical
(2) and experimental (3) temperature dependences of contact
resistivity at n2= 8.5×1014 cm-3 (vertical geometry of TLM
structure).

5. Conclusions

Thus, it has been shown (both theoretically and 
experimentally) for ohmic contacts formed to an n+-n
doping step of silicon that, in the case of electron 
degeneracy in the n+-layer and high-resistance n-Si bulk, 
contact resistivity ρс increases with temperature in the 
125–375 K range. It is shown that the growing 
dependences ρс(Т) are related to the accumulation band 
bending in high-resistance n-Si, no matter what the way 
of formation (diffusion or ion implantation) of n+-n
doping step.
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1. Introduction 

At present there exists a fixed notion of the mechanisms of current flow in ohmic metal-semiconductor contacts as well as the processes of minimization of contact resistivity and their contribution to the parameters of semiconductor devices and integrated circuits [1]. This notion asserts that contact resistivity ρс should be minimal and demonstrate thermal and electrical stability, and I – V curves of ohmic contacts must be linear and symmetric. As a rule, ρс of such contacts is described within either field emission (ρс does not depend on temperature) or thermofield emission (ρс decreases with temperature). 

However, recent investigations [2-9] showed that in some cases ρс does not demonstrate the above behavior. To illustrate, for ohmic contacts to wide-gap semiconductors with high dislocation density it was shown in [2-4, 8, 9] that ρс increases with temperature. Such growing dependences ρс(Т) were obtained in [5-7] for ohmic contacts to lapped as well as polished n-Si, at presence of high density of structural defects in the Si near-contact region. In that case, calculation of the number of defects from etching pits made for lapped silicon gave ~107 cm–2. According to the model proposed in [7, 8], this value turned out sufficient for description of growing dependence ρс(Т).


Along with the above-mentioned, some other conditions of ohmic contact formation may lead to ρс growth with temperature. For instance, use (as an ohmic contact) of an isotype n+-n junction (n+-n doping step) or p+-p junction – analog of metal-semiconductor contact in which degenerate n+-semiconductor (or p+-semiconductor) acts as a metal. In this case, we deal practically with a Schottky diode without a potential barrier [10]. In what follows, we consider a model of such ohmic contact and its experimental testing.


2. Model of ohmic contact with a doping step 


Let us consider a model of ohmic contact with an n+-n doping step in the near-contact region, with electrons in the heavily doped n+-layer being degenerate. This situation is realized in manufacturing technology for silicon devices, in particular, IMPATT diodes. In that case, the thickness 
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 exceeds the Schottky layer thickness WSh (
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), and the doping level exceeds the effective electron density of states in the conduction band Nc (
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). This means that electrons in the heavily doped region are degenerate.


Figs 2a and 2b present band diagrams for contacts to Si with a doping step, at two values of heavily doped layer thickness +


n


W


: 5 and 10 nm. In our calculations, we used the following values: 

3


16


2


cm


10


-


=


n


, +


1


n


= 2·1018, 5·1018, 1019, 2·1019 and 3


19


cm


10


5


-


×


. To obtain the band diagrams, we solved the Poisson equations for the heavily doped and lightly doped regions (both with allowance made for electron degeneracy) of the form
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Here EF is the Fermi energy, Ea ≈ 0.005 eV, q – elementary charge.


The barrier height at the contact (or, more exactly, the diffusion potential φc) was preset as 0.4 V. The electrostatic potential was considered to vanish as x((. The solutions of the Poisson equation in the heavily and lightly doped regions were matched at the boundary 
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, that is to say, the values of potentials, as well as their derivatives (i.e., the electric field strengths), were matched, respectively.


Naturally all the 
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 values taken for calculation obeyed the inequality 
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. However, since the Schottky layer thicknesses in the heavily doped region met the condition 
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 at all doping levels, there
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Fig. 1. Band diagram of ohmic contact with an n+-n doping step; n+~ 5(1020 cm–3; n ~ 1016 cm–3; Wn+~ 0.01 (m.
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Fig. 2. Band diagrams of contacts with a doping step for Si at two thickness values of heavily doped layer Wn+: 5 nm (a) and 10 nm (b); n+: 5(1019, 1020, 2(1020 and 5(1020 cm–3 at n2 = 1016 cm–3.


was no portion of 
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 independent from the coordinate x shown in Fig. 1.


One should note that, depending on the behavior of potential 
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x


j


 in the near-contact region, the contact will be either rectifying (in the case of monotonic dependence of 
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x
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 on coordinate x) or ohmic (in the case of a strongly pronounced non-monotony of 
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x


j


). In the latter case, the contact resistivity may be presented as a sum of two terms (corresponding to series resistances):
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Here, ρc1 is the contact resistivity related to thermofield passage of electrons through the barrier at the interface between a heavily doped semiconductor and metal, and
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is the effective contact resistance of the lightly doped region in the limiting case of contact energy band being of the form shown in Fig. 1. Here k is the Boltzmann constant, A* – effective Richardson constant, μn – electron mobility in the lightly doped region, LD = (ε0εs kT / 2q2n2)0.5 – Debye shielding length for the lightly doped region. It should be noted that Eq. (4) was obtained with allowance made for the results of [10] and [11]: it takes into account both the diffusion and emission terms in the current flowing through the lightly doped region.


Thus, if the inequality ρc2 > ρc1 holds, then contact is purely ohmic. In that case, band bending in the lightly doped region is accumulation rather than depletion, so the total voltage applied to the contact is dropped across the neutral bulk, thus ensuring contact ohmicity. The electron mobility μn in the region of light doping was calculated with allowance made for electron scattering by charged impurities as well as by intervalley and acoustic phonons [12]. It was assumed that dislocation density in the lightly doped region is sufficiently low and does not affect electron mobility. The expressions for μn calculation are given in [8].


Now let us dwell on an analysis of temperature dependence of contact resistivity ρc2. If the role of diffusion current is insignificant (that is to say, the inequality ((LD A*T) / (k μn Nc)) <1 holds), then one obtains with allowance made for Nc(T) = Nc0(T/300 K)3/2 that ρc2 ~ 

T


, i.e., the contact resistivity grows with temperature as 

T


. It was shown in [10] that the above inequality is valid at doping levels n2 (( 1015 cm–3. At lower and intermediate doping levels, ((LD A*T) / (k μn Nc)) ≥ 1, and (as analysis shows) the degree of ρc2 growth with temperature increases as compared with the law 

T


.


Fig. 3 presents the theoretical ρc2(T) curves built using Eq. (4) as well as low-temperature freeze-out of electrons. The doping level serves as parameter of curves. At temperatures over 125 K, all curves grow with temperature (see curves 1-3). For the curve 1 (that corresponds to the lowest doping level of 
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), the exponent of the power dependence ρc2(T) at room and elevated temperatures is maximal (equal to 2). As the doping level increases, that exponent goes down: it equals 1.1 at 3
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It should be noted that the above current mechanism (as well as that related to current flow through the metal shunts associated with dislocations – see [7, 8]) ensures purely ohmic contact behavior. At the same time, the standard mechanism that describes slightly non-ohmic contact with low barrier height (about kT/q), as well as the thermofield mechanism of current flow, result in ohmic contact behavior only in the case that Rc ( Rb (here Rc is the contact resistance, and Rb is the bulk resistance). Let us assume that the thermofield current component is predominant over wide ranges of doping levels and temperatures. Then, it is possible to use the following equation for determination of 
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 curve for a contact of unit area:
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Here, Rtp = ρtp / S (where ρtp is contact resistivity at realization of thermofield mechanism of current flow through the contact), S is the contact area.
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Fig. 3. Theoretical (c2(T) curves built using Eq. (4) (full curves) and with allowance made for low-temperature freeze-out of electrons (dashed curves; n2, cm–3: 1 – 1014; 2 – 1015; 3 – 1016).

By presenting the I(V curve as
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it is easy to make certain that the second term on the right of Eq. (7) may be neglected as compared to the first one if Rtp<<Rb. To this end, as it follows from Eq. (7), the inequality J (( JsT has to hold. Then, using the expression for JsT from Eq. (6), we obtain
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One can see from this that condition for contact ohmicity is Rtp<<Rb.


3. Details of experiment


We studied two types of specimens, with an n+-n doping step formed either by phosphorus diffusion or ion implantation, at identical n-Si(111) wafers. The latter were cut out of the same ingot made by the Czochralski method. Their thickness and resistivity were ~420 (m and ~4.6 ((cm, respectively. The wafers were subjected to chemo-dynamical polishing and surfaced according to the requirements of the 14th class.


Phosphorus diffusion from vapor phase was made at Т = 900 °С for 6 min. The depth of occurrence of the n+-layer was ~0.065 (m; the donor concentration in the n+-layer was ~3


20


cm


10


-


. Phosphorus ion implantation was made using a setup “Vesuvius–5”. The ion energy was ~60 keV; the dose was 103 (C/cm2. Thermal annealing after ion implantation was made using a setup “SDOM 3–100” in oxygen atmosphere at Т = 850 °С for 30 min. The depth of occurrence of the n+-layer was ~0.06 (m. The surface concentration of the dopant was ~

2


15


cm


10


-


.


To measure ρс(Т) over the 125–375 K temperature range, we made test structures with specimens of both types. The configuration of test structures corresponded to ρс measurement with the transmission line method (TLM) [13] that was used by us earlier in [5-8]. It enabled us to test ρс with allowance for either conduction in the n+-layer only (planar configuration of TLM structure) or through the n+-n doping step (vertical configuration of TLM structure). In the latter case, vertical TLM structure was made by n+-layer etching-off in gaps between the test pads to a depth of ~0.5 (m and 1 (m, respectively, i.e., much over the thickness of n+-layer.


Contact metallization Au(150 nm)–Ti(60 nm)–Pd(20 nm)–n+-n was made using layer-by-layer vacuum sputtering of metals onto the Si substrate (heated to 350 °С) with an n+-n doping step, in a single technological cycle, in an oilless vacuum (residual 




Fig. 4. SEM microphotograph of the cleavage of Au–Ti–Pd– n+-n-Si contact structure for an n+-n doping step made using phosphorus diffusion.




Fig. 5. Same as in Fig. 4 but for an n+-n doping step made using phosphorus ion implantation.


pressure of ~

Pa


10


5


4


-


×


). The opposite wafer side was metallized in much the same way.


For contact structures of both configurations, the cleavage surface was studied using a high resolution scanning electron microscope (SEM) S–4800 (Hitachi, Japan). 


The SEM photographs of cleavages for Au–Ti–Pd–

n


n


-


+


-Si structures with an 

+


n


-layer prepared using phosphorus diffusion and ion implantation are shown in Figs 4 and 5, respectively. In both photographs, one can see n+-n doping steps with practically close 

+


n


-layer thicknesses.

4. Experimental results: Comparison with the model


Shown in Fig. 6 are the dependences ρс(Т) measured over the 125–375 K temperature range for specimens of two types: 1) with an n+-n doping step obtained using phosphorus ion implantation into a silicon wafer (ρ ~4.6 ((cm) and 2) with an n+-n doping step obtained using phosphorus diffusion into the same Si wafer. The dependences ρс(Т) presented in Fig. 6 were measured in two ways: 1) at lateral current flow in the 

+


n


-layer and 2) at vertical current flow through the n+-n doping step.


One can see from Fig. 6 (curves 1 and 1() that, at current flow in the n+-layer (regardless of the way of its formation), the contact resistivity ρс grows with temperature but slightly (closely to dependence ρc~Т0.1 or ρc~Т0.2). The ρс value for the specimen with an ion-implanted n+-layer is about 1/3 that for the specimen with n+-layer obtained using phosphorus diffusion. This may be owing to the known advantages of the ion implantation method over the diffusion one [14].


The theoretical temperature dependence of contact resistivity is shown in Fig. 6 (curve 2), while the experimental ρс(Т) curve (obtained for diffusion-doped structure) is presented in Fig. 6 (curve 3); both curves are given for vertical geometry of TLM structure. One can see that there is no agreement between the above two curves. In our opinion, the reason for this is related to pronounced difference between the shunt and contact resistances. In our case, the shunt resistance value RSh exceeds that of contact resistance Rc = ρс / S (where S is the contact area) by more than two orders of magnitude. So, the relative error in determination of contact resistance Δρс /ρс  with the Cox and Strack method [15] is close to 100%. The results of calculation for vertical geometry of TLM structure show that, to decrease the ratio RSh / Rc , one should use structures of smaller both diameter (~20 (m) and thickness (≤10 (m). This consideration will be taken into account later.


However, the principal result obtained in this work is that the ρс(Т) curves for vertical structures with a doping step are growing. This is related (as was showed above) to realization of accumulation band bending in a lightly doped region at the interface between the silicon bulk and doping step. This means that in this case we deal with purely ohmic contacts for which linear dependence between the flowing current and applied voltage is obeyed at any temperatures, whatever the interrelation between the bulk and contact resistances.
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Fig. 6. Experimental temperature dependence of contact resistivity (planar geometry of TLM structure): 1 – ion implanted n+-layer; 1( – diffusion-doped n+-layer; theoretical (2) and experimental (3) temperature dependences of contact resistivity at n2= 8.5×1014 cm-3 (vertical geometry of TLM structure).

5. Conclusions


Thus, it has been shown (both theoretically and experimentally) for ohmic contacts formed to an n+-n doping step of silicon that, in the case of electron degeneracy in the n+-layer and high-resistance n-Si bulk, contact resistivity ρс increases with temperature in the 125–375 K range. It is shown that the growing dependences ρс(Т) are related to the accumulation band bending in high-resistance n-Si, no matter what the way of formation (diffusion or ion implantation) of n+-n doping step.
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