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Abstract. Electron relaxation processes at nitrogen temperatures in CdTe/Hg1-

xCdxTe/CdTe quantum well (QW) with an inverted band structure is modelled. In this 
structure, scattering by longitudinal optical phonons, charged impurities, acoustic phonons 
and interfaces were taken into account. It was found that for undoped and lightly doped 
QWs (concentration of background n-type charged impurities in the well is 1014 – 1016 cm-3

or less), for x close to the band inversion value 0.16, the electron mobility grows 
considerably when the QW width decreases. This mobility is higher for samples with 
smaller concentrations of charged impurities.
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Introduction

Terahertz spectral range attracts great interest of 
researchers worldwide. Nowadays, terahertz detection 
systems are widely used not only in astronomy, but also
beginning to find their application in biology, medicine 
and security. These areas of usage need light-weight, 
compact, high-speed and sensitive detectors which do 
not need deep cooling. Most of the existing THz 
detectors (e.g., superconducting hot electron bolometers, 
SIS (superconductor-insulator-superconductor) 
structures, etc.) have high sensitivity (noise-equivalent 
power NEP~10–15–10–19 W/Hz1/2) and high speed 
(response time  ~ 10–9–10–11 s) but need deep cooling 
up to T = 0.1-4 K [1]. Semiconductor bolometer InSb-
based detectors have high sensitivity (NEP~10–17

W/Hz1/2) within the spectral range (  1 – 4 m). But 
these detectors also need deep cooling and are 
characterized by relatively high response time ( 10–6 s) 
[2]. Response of existing un-cooled THz detectors in 
most cases is limited by times   10 ms (except of 

Schottky barriers and FET-based THz detectors [3]) and 
their NEP is of the order of 10–9 – 10–10 W/Hz1/2. 

Heterostructures based on the narrow band-gap 
semiconductors (like solid solutions of Hg1–xCdxTe) hold 
a high promise to be prospective materials for creation 
of THz detectors. High-quality Hg1–xCdxTe quantum 
wells (QWs) are characterized by low effective masses 
of localized electrons, high electron mobilities even at 
temperatures T  77 K, and possess great potential for 
detection of terahertz radiation. 

The problem of growth of Hg1–xCdxTe QWs and 
investigation of their properties is widely addressed in the 
literature. Photoluminescence [4, 5] and photo-
conductivity [6] of Hg1–xCdxTe QWs grown on different 
substrates (Si, GaAs, ZnTe, CdTe) have been studied. It is 
shown in [7] that high-quality HgTe QW structures can be 
used for all-electric detection of radiation ellipticity in a 
wide spectral range, from far-infrared to mid-infrared 
wavelengths. Measurements of electrical conductivity, the 
Hall coefficient, and photoluminescence of ion-milled 
Hg1–xCdxTe films were performed in [8]. Recently 
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existence of 2D semimetal in the quantum wells of HgTe 
was revealed and measurements of cyclotron resonance in 
this structure were performed in [9].

A lot of works are devoted to electron mobility in 
GaAs 2D heterostructures. In [10], limits of mobility 
improving in 2D GaAs structure were theoretically 
exhibited for extremely low temperatures. At T = 1 K the 
mobility achieved 108 cm2/V s and was limited by 
background impurities of the reduced concentration 
1012 cm−3. At liquid helium temperatures, the mobility 
was dropped significantly and limited by acoustic 
phonon scattering.

There are much less experimental data on mobility 
in mercury–cadmium–telluride 2D structures. Mobilities 
were studied experimentally in SL with thin wells [11] 
with the direct band structure, but they had not get any 
mobility increasing in comparison with 3D. In [12] it 
was shown that inverted band structure should be 
realised in structures with QW thicker then ~6.5 nm. 

The high mobility (2.8105 cm2/(Vs)) was 
observed in the QW CdTe/HgTe/CdTe of 16 nm width 
with inverted band structure at the temperature 3K [13]. 
On the other hand, for bulk MCT it was shown [14] that 
electron mobility increases in the neighborhood of
composition value of 0.16 up to 106 cm2/(Vs) at the 
liquid nitrogen temperature. 

Here, we try to define limiting mechanisms of 2D 
mobility in CdTe/HgCdTe/CdTe hetero structures at 
moderate cooling. We modeled electron relaxation 
processes in CdTe/Hg1–xCdxTe/CdTe QWs with thick 
wells and inverted band scheme to find the possibility to 
increase the in–plane mobility in these structures. Our
studies are aimed to estimate the optimal QW parameters 
for the creation of high-speed and moderately cooled 
THz detectors, namely field-effect transistors with high 
mobilities in shallow channel.

1. The QW band structure and properties

1.1. Band scheme and properties of QW 

Inside CdTe/Hg1–xCdxTe/CdTe QW for compositions 
0 < x < 0.16, the inverted band scheme is realized [15],
while the direct band scheme is realized in the barriers 
(Fig. 1). All calculations are carried out for the liquid 
nitrogen temperature T = 77 K. In this chapter, we 
describe some properties of the system under 
consideration. 

The concentration of charged impurities in these
QWs can be about 1014 – 1016 cm–3 [6, 7, 16].  Due to the 
inverted band scheme and high density of states for
heavy holes, the Fermi level lies higher than the bottom 
of the conduction band in the well. 

For undoped and lightly doped Hg1–xCdxTe at 
liquid nitrogen temperatures, there are two dominant 
relaxation mechanisms for localized electrons in bulk 
crystals – scattering by longitudinal optical (LO) 
phonons and scattering by charged impurities [14, 16]. 
With the growth of temperature, the role of scattering by

optical phonons increases, while scattering by charged 
impurities becomes less important. In heterostructures,
additional important scattering on interface roughness
appears. In this paper, we discuss all these mechanisms. 
Also, we estimate scattering by acoustic phonons to 
prove that it is minor scattering mechanism for our 
system. 

The scattering of localized electrons in the QW 
with an inverted band scheme qualitatively differs from 
the scattering in the direct band heterostructures. In 
direct band semiconductors, the conduction band is 
formed by the levels with Г6 symmetry, while the light-
hole and the heavy-hole bands are formed by Г8 levels. 
In semiconductors with the inverted band scheme, Г6 
and Г8 levels change their positions – and now the 
conduction band is formed by Г8 levels, the heavy-hole 
band has the same symmetry as the conduction band and 
touches the conduction band at k = 0, while the light-
hole band is formed by Г6 levels and lies below the 
conduction band. 

There are contradicting experimental results in 
literature, which describe the valence-band offset Δ in 
the HgTe/CdTe QWs. The most cited values are 0.35 eV 
[19, 20] and 0.55 eV at x=0, they are supposed to change 
linearly with the composition. In our calculations, we 
use the value 0.55(1–x) eV [21, 22, 23] (see Fig. 1). 

1.2. Interface levels and wave functions 

In direct band QWs, all levels of localized electrons lie 
above the bottom of the conduction band. In general, the 
Fermi level lies in the band gap of such structures. Thus,
electron levels are located much higher than the Fermi 
level, and their occupancy influences the electron 
scattering processes only slightly. 

Fig. 1. Band scheme of QW CdTe/Hg1–xCdxTe/CdTe along the 
z axis of the QW, where L is the QW width, Δ – valence band 
offset, VS – conduction band offset and EA – negative band gap 
inside the QW, EB – positive band gap of the barrier. VS = (EB –
Δ – EA).
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Fig. 2. Electron wave functions for the QW width L=50 nm. The horizontal axis corresponds to z coordinate; peaks of the wave
functions are at the hetero-interfaces. The vertical axis represents the magnitude of the wave function in arbitrary units (a. u.). 
The upper row corresponds to the composition x=0 while the lower row corresponds to the composition x=0.12.

CdTe/Hg1–xCdxTe/CdTe QWs with the composition 
0 < x < 0.16 have an inverted band scheme inside the 
well and a direct band scheme in barriers [15, 17]. Thus 
in such structures there exist one or two electron levels 
which lie below the bottom of conduction band of the 
well (see Fig. 3) due to the mixture of the states of 
different symmetry and due to the change of the sign of 
effective mass when crossing the interface [15]. These 
levels are built from evanescent states in each of the host 
layers and are localized on the interfaces (see Fig. 2). 
They are called “interface” levels [15] and the energy of 
the ground interface level reduces at small well widths 
[18, p. 81]. Consequently, one or several levels of 
localized electrons are located below the Fermi level 
(see Fig. 3). Such position of these levels drastically 
changes the occupation of them and influences the 
electrons scattering. 
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Fig. 3. Dependencies of energy spectra and Fermi level on 
the well width L. The temperature is taken to be T = 77 K, the 
composition x = 0.12. EC = 0 is the bottom of the conduction 
band and EV = –76.6 meV – top of the valence band in the 
well.

It is important to note that for compositions x that
are close to zero, ground level electrons are localized at 
interfaces of the QW, which leads to the importance of 
interface scattering. On the other hand, ground level 
electrons are localized inside the quantum well for the 
compositions x within the range 0.1 < x < 0.16 (see Fig. 
2). In this case, the probability to find electron at 
interfaces is low and interface scattering is also
supposed to be small. In this paper, we consider 
CdTe/Hg1–xCdxTe/CdTe QW, as an example, for 
composition x = 0.12. 

Principal features of electron relaxation in the 
CdTe/Hg1–xCdxTe/CdTe QW are determined by the 
influence of the ground levels occupation on the 
scattering processes.

For undoped QW with the composition x = 0.12 at 
the temperature T = 77 K, as shown in Fig. 3, the Fermi 
level is evaluated by alignment of concentrations of 
electrons and heavy holes. Fermi level varies from 1.8 
meV from the Γ8 band bottom of electrons in the well for 
QW of 20-nm width to 8.6 meV for QW of 60-nm 
width. The evaluated concentration of electrons in QW 
varies from 1017 cm–3 for QW of 20 nm width to 41016 

cm–3 for QW of 60 nm width. 

1.3. Influence of the misfit strain on electron spectra 

To calculate the energy structure of CdTe/
Hg1–xCdxTe/CdTe quantum wells, it is important to 
consider the band shift and band splitting due to the 
strains in the heterostructure. These strains arise from 
lattice mismatch between the materials of the well and the 
matrix. To estimate such strains, we use the simple 
approach that assumes that the in-plain lattice parameters 
of the well material are forced to be the same as 
appropriate parameters of the barrier material [24, 25]. 

Consequently, the biaxial strain in the layer plane 
arises inside the well (x, y). The value of this strain can 
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be estimated from the simple formula 

HgCdTe

HgCdTeCdTe
yyxx a
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ee


  [25, 26], where aCdTe and 

aHgCdTe are the lattice parameters of the appropriate 
layers in the heterostructure. The values are as follows:
aCdTe = 0.6482 nm, aHgTe = 0.64605 nm at T=300 K [27]. 
For x = 0.12, aHgCdTe = 0.64631 nm. 

With the values of the lattice parameters of the well 
and barrier, we get the strain components exx = eyy = 
0.0029274, ezz = 0. 

According to [28, 34], biaxial strain leads to two 
effects. The first effect is the alteration of the gap value 
between Г6 and Г8 bands. The change of this gap is 
given by [29]: 





3
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where (C – a) is the difference of deformation potentials 
of conduction and valence bands, respectively. 
(C – a)HgTe = –3.69 eV [29], (C – a)CdTe = – 3.16 eV [30]. 
For Hg1–xCdxTe with x = 0.12, the value of this 
parameter is found from the linear approximation 
(C – a)HgCdTe = –3.63 eV. Effective band gap for x = 0.12 
is –50.9 meV without strain. Taking into account strain 
effect, the band gap reaches –72.1 meV. 

The second effect of biaxial tensile strain [31] is in 
splitting of electron and heavy-holes Г8 states. In this 
case, the top of Г8 heavy-hole band shifts under the 
bottom of the Г8 conduction band. The value of such 
splitting in the point k = 0 is given by [28, 34]:

||2 xxbeE
g
  (1.2)

From [32, 33], Eq. (1.2) and the Hooke’s law in the 
simplest form we can estimate the modulus of 
deformation potential b to be of the order of 1.54 eV. In 
further calculations, we assume that the difference 
between the estimated value of b for HgTe and the value 
of this potential for Hg1–xCdxTe with the composition 
x = 0.12 is negligible. The calculated splitting between 
light and heavy ΔГ8 bands is about 9 meV. Thus, the 
strain introduces the gap between electrons and heavy 
holes. Consequently the gapless case can not be realized 
even for x = 0.16.  

2. Boltzmann transport

Presented in this section is the general theory that is the 
basis for all further calculations of electron relaxation 
times and mobilities. We start from the Hamiltonian of 
the localized electrons being scattered and use the 
Boltzmann transport equation (BTE) to obtain relaxation 
times for longitudinal optical phonon scattering and 
charged impurities scattering. It is assumed that external 
electric field is applied in the plane of QW. In our 
calculations, only electron-lattice interactions are taken 

into account while electron-electron interactions are 
neglected.  

The Hamiltonian of localized electron can be 
written as: 

defHrFeHH 


0 (2.1)

where H0 is unperturbed Hamiltonian, while Hdef

includes the local fluctuations of the electrostatic 

potentials due to the defects and lattice vibrations, F


 is 
a weak, constant and homogeneous electric field. We use 
BTE in the simplest form: 
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where ),( kn  and ),(  kn describe the initial and final 

states of electron during the scattering process, k and 

k are two-dimensional electron wave-vectors,
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distribution function for localized electrons in the QW, 
energy E depends on the wave-vector k via the 
nonparabolic dispersion law, for example in the well this 
law has the form 
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P is the Kane matrix element equal to 8.310–8 eVcm.
Using the principle of detailed balance, one can obtain 
that

   knnkknkn WW . The distribution function 

can be written as sum of symmetric and asymmetric 
parts: 

f = f S + f A (2.3)

The sum over the symmetric part f S in Eq. (2.2) is 
equal to zero. We deal with the homogeneous system 
that is in the steady state under a uniform electric field. 
Changing the variable in the derivative in the left-hand 
side of Eq. (2.2), we obtain: 
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(2.4)

In the present work, we use the simple qualitative 
approach that operates with k = 0 wave functions to 
calculate electron relaxation times and mobilities for 
different scattering mechanisms. This approach neglects 
effects of s-p hybridization. Nevertheless, the k = 0
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wave functions correctly describe many principal 
features of the band structure under consideration, 
particularly, they correctly describe the localization of 
electrons in the well and selection rules for interband 
transitions. Moreover, the energy spectra obtained in 
terms of the envelope functions approach [17] behave in 
the same way as such spectra obtained in terms of the 
88 kp method [37]. In our calculations, we use 
nonparabolic dispersion law in order to describe 
correctly the energy dependence of the density of states. 
Our approach allows us to calculate and analyze the
transition matrix elements for all the considered
scattering mechanisms.

3. Two-dimensional electron relaxation 
on LO phonons

Accounted in the calculations of this chapter is only one 
scattering mechanism – scattering by longitudinal optical 
phonons. This mechanism was mentioned above as one 
of the dominant at the liquid nitrogen temperatures for 
the bulk crystals of MCT. We calculated relaxation 
times of two-dimensional electrons to reveal the 
influence of changes in parameters of the QW on the
electron scattering processes. In a strict sense, we cannot 
introduce the momentum-scattering time for inelastic 
processes. But the relaxation time can be considered to 
be a good qualitative estimate for the momentum 
relaxation time, since phonon emission and absorption 
result in large changes in the electron momentum. 

The momentum relaxation time n(k) of localized 
electrons can be introduced from [34] and Eq. (2.4) by 
means of the momentum relaxation rate for electron gas 

excited initially into the ),( kn


state: 















  knnk
n

W
k

kk

k
kn

cos

)(

1

,

(3.1)

where  is the angle between the initial and final electron 
wave-vectors in the process of scattering. 

In [35] it was also proved that the relaxation time 
approach could be used when phonon energy is higher 
than the thermal energy kBT. Gelmont et al. compared 
relaxation-time approximation and Monte-Carlo 
simulations for polar-optical phonon scattering in GaN 
and obtained a good agreement between these 
techniques. Comparison between relaxation-time 
approximation and Monte-Carlo simulation of electron 
mobility in Hg1–xCdxTe at liquid nitrogen temperatures 
for polar-optical phonon scattering was made in [36], 
also a good agreement was obtained.

For 2D case for steady-state transport under an 

uniform electric field, we have 0/  tf , 0 fr


. For 

low-field SA ff  , ff S  , and the asymmetric part 

of the occupancy function can be found from Eq. (2.4) 
and Eq. (3.1): 
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For the longitudinal optical phonon scattering,
transition probabilities

  knnkW can be written from 

Fermi’s golden rule: 
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Where He – ph is the Hamiltonian of the electron-phonon 
interaction, and LOw  is the phonon energy. 

Detailed calculations of the transition probabilities 
and matrix elements for the longitudinal optical phonon 
scattering were carried in [34]. To calculate relaxation
times for this scattering mechanism, we use the final 
formula (6.141) from [34] where the states occupancy in 
the QW is taken into account: 

,
))/((

])()([
))(1(

),,(

2

1

2

1
)(

112
)(/1

22
2

,

0

2
























 



























Lmq

wqkEkE
qkfqd

mnnG

TN
L

we
k

LOnn
n

mn

LO
LO

n






           (3.4)
where 0 = 20.5 – 15.6x + 5.7x2 and 
 = 15.2 –15.6x + 8.2x2 are static and high-frequency 
dielectric permittivities [27, p. 126],
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 is the concentration of 

LO phonons at a given temperature, m is the quantum 
number of the phonon mode, L is the QW width, n and 
n’ are the quantum numbers of initial and final electron 

levels during the scattering process, k


is the initial 

wave-vector of electron in the layer plane of the QW.
In HgCdTe compounds, two types of longitudinal 

optical phonons exist the first one is related to HgTe and 
the other one – to CdTe matrices. These phonons have 
slightly different energies – 1LOw = 17.1 meV and 

2LOw = 20.8 meV, respectively [27]. In our 

calculations, we assume that the relative concentration of 
HgTe-related phonons is proportional to (1-x), while the 
concentration of CdTe-related phonons is proportional to 
x. Relaxation rates in Eq. (3.4) should be calculated for 
each of these types separately, and then the summary 
rate should be found from the relation

xkxkk LO
n
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One should note that the relaxation time in Eq. 
(3.4) depends on the electron kinetic energy via wave-

vector k


. This relaxation time determines relaxation of 

the population of the state ),( kn
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In equation (3.4), G(n, n, m) is the square of the 
overlap integral for electron and phonon wave functions: 

22/
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where )(zn and )(zn are the envelope wave functions 

of the initial and final states of the localized electrons in 
the scattering process and )(zph  is the wave function 

of the LO phonon, which describes the symmetry of the 
phonon electrostatic field: 
















 







 


km

L

mz

km
L

mz

zph

2,sin

12,cos
)( (3.6)

The overlap integral  G(n, n, m) describes the 
parity selection rules in the process of electron 
scattering. The integrand should be symmetric to get a 
non-zero value of G. The relaxation time in Eq. (3.4) for 
electrons from a level n takes into account the scattering 
of these electrons within the level as well as transitions 
of these electrons to other levels in the QW. 

In these structures, the electron ground level 
always lies below the bottom of the conduction band of 
the well, while the first level appears inside the band 
gap at large widths of QW [17]. With the decrease of 
the QW width, the excited levels climb up, while the 
ground level goes deeper under the Fermi level. That’s 
why, 2D electron gas of the ground level is always 
degenerated, and the degree of degeneracy is 
determined by the energy interval between the ground 
level and the Fermi one. The average kinetic energy of 
electrons on the degenerated level is much higher than 
the classical value kT for 2D electrons. We calculated 
how the average kinetic energy of electrons of different 
levels depends on the QW width, using the classical 
formula: 
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As can be seen from Fig. 3, the ground electron 
level is always placed below the Fermi level, while the 
first excited one is placed below it at L > 20 nm. 
Dependencies of the average electron kinetic energy on 
the well width L for three lowest levels of the QW are 
presented in Fig. 4. One can see that the average kinetic 
energy of the ground level changes from 3.82 kT to 
5.34 kT, while varying the QW width. The average 
kinetic energy of the first level varies from 1.18 kT to 
3.24 kT while this energy for the second level is around 
1.04 kT to 1.13 kT. 

Relaxation times for electrons from the bottom of 
three ground levels of the QW are presented in Fig. 5(a) 
(higher levels are not considered because the level of 

their occupancy is negligible). Relaxation times for 
electrons with an average kinetic energy at these levels 
are presented in Fig. 5(b).
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Fig. 4 Dependencies of the average kinetic energies of 
electrons at the ground (n=0), first (n=1) and second (n=2) 
levels of CdTe/Hg1-xCdxTe/CdTe QW on the well width L. The 
temperature is taken to be T=77 K, the composition x=0.12. 
EC=0 is the bottom of the conduction band and EV= - 76.6 meV 
– top of the valence band in the well. 
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Fig. 5. LO phonon scattering dependences for relaxation times 
of electrons with zero in-plane kinetic energy from the ground 
(n=0), first (n=1) and second (n=2) levels (a) and relaxation 
times of electrons with the average in-plane kinetic energy 
from these levels (b) in the CdTe/Hg1-xCdxTe/CdTe QW on the 
well width L. Temperature T=77 K, composition x=0.12.
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The relaxation time of electrons from the bottom of 
the ground level grows considerably when QW width 
decreases (see Fig. 5 (a)). Its increase is caused by the 
growth of the degree of degeneracy of the ground 
miniband,which leads to decreasing the number of free 
states where electrons with low kinetic energies can 
scatter to. Not only the ground, but the first miniband 
becomes degenerate at large QW widths, when this 
miniband descends, below the bottom of the conduction 
band of the well. However, degeneracy of the first level 
disappears at the small QW widths, when this level is 
high (see Fig. 3). All other 2D levels at Fig. 3 are 
nondegenerate. 

The drift mobility of electrons in the QW in the 

applied in-plane electric field F


 can be calculated by 
averaging all the possible electron velocities in this QW. 
Taking into account the quantization of the wave-vector 
k along the QW axis and using Eq. (3.2), we can rewrite 
the latter equation: 
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where relaxation times are given in Eq. (3.4); effective 
masses and distribution function depend on the level 
number n and the modulus of the in-plane wave-vector k .

High level of degeneracy and high average kinetic 
energies of electrons of ground and first levels (at large 
well widths) lead to the substantial contribution of lateral 
transitions to the processes of electron scattering on LO 
phonons. During this lateral transition, electrons with 
huge kinetic energies are scattered to the levels energy 
change to which from the initial level is much higher
than the phonon energy.

4. Electron mobility for charged impurities scattering

We calculated the mobility of electrons on charged 
impurities in the QW CdTe/Hg1-xCdxTe/CdTe by 
modifying the approach of [18], where it is used the 
approximation T = 0 K, which allows to get 
simplifications in the calculations. Here, it is considered 
more general case. Using Fermi’s golden rule and the 
principle of detailed balance, one can obtain: 
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We will find the solutions of the equations (2.4) and 
(4.1) in the form of the equations (2.3), (3.2). It is shown 

in [18] that Eq. (2.3) will be the solution of Eq. (2.4), if 
relaxation times fulfill the linear equation [18]: 
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We will deal especially with elastic scattering,
because scattering by charged impurities changes only 
the direction of the electron momentum, while the 
magnitude of this momentum remains unchanged. 
Transitions between different levels during the scattering 
process are restricted under this assumption. 
Consequently, coefficients Ki  j will be equal to zero,
and Eq. (4.2) will be separated by several independent 
equations for each energy level. 

To calculate the relaxation time, we introduce the 

additional wave-vector   qkk


. From the 

momentum conservation law, we obtain: 

,)cos1(
2

sin2 222 


  kkqk


where  is the 

angle between the initial and final wave-vectors of 
electron in the scattering process. We obtain the formula 
for the relaxation time on electrons of the n-th level 
scattered by charged impurities: 
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where
2

sin20 
  kq . One should note that in the latter

formula nn Ef  /)0( is not the Dirac delta function as it 

was at T=0. To find the matrix element 
0

2  

 
qq

average
def qnkHnk , we follow the same 

procedure as that described in [18] for T = 0. However,
we modify the screening function that describes the 
screening in 2DEG to account the non-zero temperature. 
According to the semi-classical approach, when q 0 
[18, p. 210], the screening function can be found as: 

  qqq /1)( 0 (4.4) 
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1]}/)exp[(1{  TkEE BFn . Evaluating the derivative 

of the electron concentration for non-zero temperature, 
we obtain the final equation for the screening function: 
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In the limiting case of T = 0 K, fn(0) = 1, and Eq. 
(4.5) reduces to appropriate formula from [18]. Having 
the explicit Eq. (4.5) for the )(  q  and substituting the 

formula for the matrix element from [18] into Eq. (4.3), 
we obtain the final formula for the relaxation time of the 
localized electrons on the n-th level, which are scattered 
by charged impurities at non-zero temperature: 
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(4.6)

The concentration of l-th impurity species (charge 
elZl) is denoted by cl, and the length over which these 
impurity species are found in the heterostructure is 

denoted by lll
z zzL minmax  . The sum is carried out 

over all kinds of the charged impurities in the system. 
For CdTe/Hg1–xCdxTe/CdTe QW, one should use the 
value Z = 1 or 2, having in mind Hg+ interstitials in n-
type material or Hg2- in p-type material [38, 39]. 

Distribution of the charged impurities in the system 
is described by the form-factor gimp: 
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where )(zn is the envelope wave function of the n-th

level electrons. The mobility of electrons for each of 
these levels can be expressed as: 
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The average mobility of electrons for only one 
scattering mechanism (charged impurities scattering) can 
be found then as: 
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In the n-type QW with the composition x = 0.12 
and the concentration of background charged impurities 
1014 – 1015 cm–3, the Fermi level varies from 5.3 up to 
11.2 meV (see Fig. 3). According to our estimations, 
background impurities affect electron scattering much 
stronger than the remote delta-doped layer of the 
equivalent charge density. Thus, background charged 
impurities play an important role in the scattering for 
these QWs. In further calculations, we will treat the case 
of the background impurities scattering, because these 
impurities are always present in the QW.

5. Estimation of minor scattering mechanisms

5.1. Scattering by acoustic phonons 

In HgCdTe quantum wells can exist two channels of 
electron relaxation via the acoustic phonons scattering. 
These are scattering by the deformation potential 
interaction mechanism and scattering by the 
piezoelectric interaction mechanism [34]. However, for 
the quantum wells, growth direction of which is [001] 
axis, the piezoelectric interaction is absent [40, p. 48]. 
So, in this chapter, we will estimate the relaxation time 
of electrons that scatter on acoustic phonons via 
deformation potential interaction. 

In layered heterostructures, acoustic waves consist 
of extended and confined modes. Extended modes 
propagate through the whole heterostructure in any 
direction. Confined modes are localized in the layer 
plane of the well and propagate along this plane. 
However, due to the small differences between elastic 
properties of the matrix and quantum well materials, this
confinement is weak. Thus, confined modes can be 
neglected, while extended modes can be approximated 
by plane waves. The energy of acoustic phonon can be 

estimated as 





 

L
sE Lacoustic

2
~  [34, 6.135], where 

sL = 105 cm/s is the sound velocity in the layer plane. For 
L = 20 nm, the acoustic phonon energy is two orders of 
magnitude lower than the mean kinetic energy of the 
ground level electrons (see Fig. 4). Therefore, the 
scattering can be assumed to be elastic. 

Thus, for estimations we used the simple model 
[34, 6.137] that assumes the well to be infinitely deep, 
acoustic phonons to be bulk-like and non-parabolicity of 
the dispersion law to be neglected: 
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(5.1)

where  )(1 00 kfn is the factor that describes the 

occupancy of the state electron scatters to; assuming the 
scattering to be elastic [34], we can state )()( 00 kfkf nn  . 

The deformation potential constant (C – a)HgCdTe =
–3.63 eV is (see Eq. (1.1)); m* is the electron effective 
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mass, n0 and n are the numbers of electron levels and

00 /VsMC LL  = 5.06251017 eVs/cm4 is the mean 

elastic constant of the material (taken to be the same as in 
HgTe), M0 and V0 are the mass and the volume of the 
primitive cell of HgTe. 

According to our estimates, the relaxation time of 
the ground level electrons with the average kinetic 
energy is close to 610–10 s for L = 20 nm and 3.810–10

s for L = 60 nm; the relaxation time of first level 
electrons with the average kinetic energy is around 
2.610–10 s for L = 60 nm.  These times are much larger 
than appropriate times for longitudinal optical phonon 
scattering (see Fig. 5 (b)). Consequently, the acoustic 
phonons scattering is small and can be neglected in the 
further treatment.

5.2. Scattering on interface roughness 

Very little is known about the microscopic structure of 
the interface defects so they usually use very simple 
models for the calculation of scattering by these defects. 
All estimations are carried out for the well of the 20-nm 
width, which is the minimal width presented in our 
calculations. 

To estimate the scattering by interface roughness,
we use the model presented in the book of Bastard [18]. 
In this model, the interface defect is assumed to have the 
thickness h of one monolayer in the growth direction and 
have extensions lx and ly in the layer plane. It is assumed 
that these defects are located far away from each other,
so scattering events on different defects are independent 
from each other. Calculations are made at T = 0 K in the 
Electric Quantum Limit, which assumes that only the 
lowest electron sub-band is occupied. In our system, at 
small well widths electrons scatter from the ground 
level, therefore this assumption is reasonable. We used 
the approach from [18], which allows to take into 
account the sharpness of the electron envelope function 
at the interface: 
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where kF is the Fermi wave vector, 0(z) – envelope 
wave function of the ground level electrons, Vb – barrier 
height, m0 – effective mass of the ground level electrons,
(k) is defined in Eq. (4.5),  is the angle between 
electron wave vectors before and after the scattering. 

 To estimate the relaxation rate from the latter
equation, one should know the average concentration of 
interface defects Ndef and their average lateral 
dimensions lx and ly. Lateral dimensions of the defects 

were taken from [41], which is often used for 
estimations of the interface scattering in quantum wells. 
We have found no data about the concentration of 
interface roughness defects in HgCdTe QWs. 
Nevertheless, the authors [42] created HgCdTe 
heterostructures with fixed charges at the interfaces with 
the concentration within the range 1010 – 51010 cm–2. 
We assume that the concentration of roughness defects 
Ndef is the same as the concentration of interface fixed 
charges in the samples of [42]. Thus, we obtain that for 
ground level electrons with the average kinetic energy, 
the relaxation time for interface scattering in the well of 
20-nm width is close to 10–9 – 710–9 s. This relaxation 
time is an order of magnitude higher than the appropriate 
time for the longitudinal optical phonon scattering (see 
Fig. 5 (b), thus the interface scattering can be considered 
as negligible in the further treatment. 

5.3. Influence of the value of the valence-band offset 

Values of the valence-band offset Δ in the literature are 
contradicting (see section 1.1). Then, it is important to 
estimate the influence of variation of this parameter on 
the mobility of localized electrons. We compared the 
mobilities for charged impurities scattering and for the 
LO phonons scattering for two QW widths – 20 and 60 
nm. There are the values compared as to the valence-
band offset Δ1 = 0.55(1–x) eV and Δ2 = 0.35(1–x) eV. 
According to our calculations, different values of the 
valence-band offset lead to the mobilities that differ by 
approximately 1.5 times at small well widths for each of 
the scattered mechanisms. For the wide wells, variation 
of the mobility with the change in the valence-band 
offset is weaker. 

Thus, we can see that the uncertainty in the value 
of the valence-band offset strongly affects the magnitude 
of the electron mobilities, and it is principally impossible 
to obtain precise numerical results for relaxation times 
and mobilities. Also, it is impossible to estimate the 
strain values precisely, because they depend on the other 
technological heterostructure layers and on the 
heterostructure growth conditions.  

You can also aim the reduction of stress in the 
layers. Our calculations show that for the QW with the 
concentration of n-type charged impurities of 1015 cm–3, 
the value of strain sufficiently affects the mobility. For 
example, in the well of 20-nm width, the mobility in the 
absence of strains is in times greater than such mobility 
in the presence of the strain (see section 6). Thus, the 
absence of the strain leads to growth in the electron 
mobility.

6. Results for electron mobility 
in CdTe/Hg1-xCdxTe/CdTe quantum well

The average mobility of electrons in the CdTe/
Hg1–xCdxTe/CdTe QW that includes both the LO 
phonons scattering (Eq. (3.9)) and charged impurities 
scattering (Eq. (4.9)) can be found as: 
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where the summary mobility of the n-th level electrons 
is found from the relation 

CI
n

LO
nn  /1/1/1 (6.2)

Results for the electron mobility for LO-phonon 
scattering only (Eq. (3.9)) and results for the average 
mobility that includes two scattering mechanisms (Eq. 
(6.1)) are plotted in Fig. 6. 

The electron mobility that takes into account only 
the LO phonons scattering, grows substantially, when 
the QW width decreases. Therefore, at small charged 
impurity concentrations the LO phonons scattering 
dominates, and the average electron mobility also grows 
at small well widths. When the concentration of charged 
impurities is greater, the growth of average mobility is 
partially suppressed. For example, for the concentration 
of n-type charged impurities 1016 cm–3, the average 
mobility grows approximately two times only. These 
results that describe variation of the average electron 
mobility with the quantum well width can 
be possibly used to optimize growth procedure for
CdTe/Hg1–xCdxTe/CdTe QWs with different properties 
within the same technological line. 

It is important to note that usage of more pure 
samples of Hg1–xCdxTe with lower concentrations of 
charged impurities allows one to obtain higher electron 
mobilities for the charged impurities scattering. In this 
case, the average electron mobility also is higher. Also,
one should note that in this paper we considered the 
model sample where strain is not relaxed. In the case of 
using the samples with buffer layers that partially relax 
the strain, the strain-induced increase of the band gap 
will be smaller, and the mobility of localized electrons 
should increase by several times. 
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Fig. 6. Electron mobility in the CdTe/Hg1–xCdxTe/CdTe QW. 
The mobility includes longitudinal optical phonon scattering 
(LOP) and charged impurities scattering (CI). Line A is for LOP 
and CI scattering with the concentration 1015 cm–3, line B is for 
LOP and CI scattering with the concentration 1014 cm–3, line C is 
for pure LOP scattering mechanism. The parameters used are as 
follows: temperature T = 77 K; composition x = 0.12.

Unfortunately, the authors do not know the 
experimental data on the mobility of electrons in the
CdTe/Hg1–xCdxTe/CdTe quantum well with inverted 
band structure at the nitrogen temperature. Therefore,
it is useful to compare electron mobilities in the 
CdTe/Hg1–xCdxTe/CdTe QW with inverted band scheme 
in the well (Fig. 6) with electron mobilities in other 
Hg1–xCdxTe structures at T = 77 K. The electron mobility 
in bulk undoped Hg1–xCdxTe with the direct band 
scheme at the composition x = 0.2 is 2.5105 cm2/(Vs) 
[27, p. 95]. The electron mobility in bulk HgTe (which 
has the inverted band scheme) is 2.2105 cm2/(Vs) [27, 
p. 95]. 

According to our calculations, the electron mobility 
in the QW CdTe/Hg1–xCdxTe/CdTe with the 
concentration of n-type charged impurities 1015 cm–3 is 
not higher than 6–7105 cm2/(Vs) for the composition 
x = 0.2, and it is close to 1–1.2106 cm2/(Vs) for the 
composition x = 0. It was shown in [13] that the electron 
mobilities in the QW CdTe/HgTe/CdTe (at T = 3 K) can 
reach 2.8105 cm2/(Vs). From the comparison of these 
mobilities one can see that the maximal mobility of 
electrons in Hg1–xCdxTe could be reached in quantum 
wells with the inverted band scheme inside the well. 

One should note that, at very small QW widths 
(about 10 nm and less [12]), the width of interfaces 
becomes comparable with the width of the quantum 
well. So the scattering by interface roughness [34, 
p. 249] and the scattering by interface phonons [34, p. 
287] become more important and the growth of mobility 
can be suppressed.

Apparently, we can expect the highest mobility in 
mercury–cadmium–telluride structures with the inverted
band scheme quantum wells at moderate concentrations of 
charged impurities. Therefore, these structures are of 
interest for the creation of semiconductor THz detectors 
based on hot electrons operating under moderate cooling 
(up to liquid nitrogen temperature) or ambient temperatures. 
It is known that narrow gap semiconductors are promising 
materials for direct THz detectors due to high electron
mobility, high carrier concentration and low effective 
masses of electrons [3, 43]. In our case, we should expect 
the electron relaxation time of about 10-11 s and scattering 
mean free path of about 50 μm. For this relaxation time,
the QW structure provides a strong interaction with THz 
radiation by the free-carrier Drude absorption mechanism 
[44] in the frequency range of 100-700 GHz. The high 
conductivity of degenerate electron gas on the metal type 
structure provides resistance to the order of a few tens of 
ohms, which will ensure a good matching with the planar 
metallic antenna. A large mean free path carriers will 
implement those structures technologically.

Therefore, the quantum wells with the inverted 
band scheme HgCdTe are the promising structures for 
THz detector design. Thus, it is possible to realize
detectors on the effect of the electron gas heating, such 
as hot electron bolometers or field effect transistors with 
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a shallow channel on the basis of the in-plane transport 
in the quantum well [45].

7. Conclusions

We have modelled electron relaxation processes in the n-
type CdTe/Hg1-xCdxTe/CdTe wide QWs with the 
inverted band structure at the liquid nitrogen 
temperatures and for x close to the band inversion value 
0.16, for their potential usage as THz range detectors. It 
was found that the longitudinal optical phonons 
scattering and charged impurities scattering are 
dominant mechanisms, while the acoustic phonons 
scattering and interface roughness scattering can be 
neglected. It was shown that the electron mobility could 
reach values of the order of magnitude of 5*106 – 107

cm2/(Vs) for the well widths 60 – 20 nm in such 
structure. These values could be estimated at the 
concentration of the diluted charged impurity of 1014 –
1015 cm-3. 

Usage of relaxing buffer layers allows one to reach 
the partial relaxation of the strains in the quantum well
and to increase the mobility by several times. This
mobility is an order of magnitude higher than for the 
QW with the direct band structure and bulk mercury-
cadmium-telluride. On the one hand, it places high 
demands on the quality of the structure. On the other
hand, it provides the possibility to implement fast direct 
terahertz detectors, for example, field effect transistors 
with the shallow channel based on the quantum well or 
hot electron bolometer operating at moderate cooling.
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Introduction 

Terahertz spectral range attracts great interest of researchers worldwide. Nowadays, terahertz detection systems are widely used not only in astronomy, but also beginning to find their application in biology, medicine and security. These areas of usage need light-weight, compact, high-speed and sensitive detectors which do not need deep cooling. Most of the existing THz detectors (e.g., superconducting hot electron bolometers, SIS (superconductor-insulator-superconductor) structures, etc.) have high sensitivity (noise-equivalent power NEP~10–15–10–19 W/Hz1/2) and high speed (response time ( ~ 10–9–10–11 s) but need deep cooling up to T = 0.1-4 K [1]. Semiconductor bolometer InSb-based detectors have high sensitivity (NEP~10–17 W/Hz1/2) within the spectral range (( ( 1 – 4 (m). But these detectors also need deep cooling and are characterized by relatively high response time (( (10–6 s) [2]. Response of existing un-cooled THz detectors in most cases is limited by times ( ( 10 ms (except of Schottky barriers and FET-based THz detectors [3]) and their NEP is of the order of 10–9 – 10–10 W/Hz1/2. 


Heterostructures based on the narrow band-gap semiconductors (like solid solutions of Hg1–xCdxTe) hold a high promise to be prospective materials for creation of THz detectors. High-quality  Hg1–xCdxTe quantum wells (QWs) are characterized by low effective masses of localized electrons, high electron mobilities even at temperatures T ( 77 K, and possess great potential for detection of terahertz radiation. 


The problem of growth of Hg1–xCdxTe QWs and investigation of their properties is widely addressed in the literature. Photoluminescence [4, 5] and photoconductivity [6] of Hg1–xCdxTe QWs grown on different substrates (Si, GaAs, ZnTe, CdTe) have been studied. It is shown in [7] that high-quality HgTe QW structures can be used for all-electric detection of radiation ellipticity in a wide spectral range, from far-infrared to mid-infrared wavelengths. Measurements of electrical conductivity, the Hall coefficient, and photoluminescence of ion-milled Hg1–xCdxTe ﬁlms were performed in [8]. Recently existence of 2D semimetal in the quantum wells of HgTe was revealed and measurements of cyclotron resonance in this structure were performed in [9].

A lot of works are devoted to electron mobility in GaAs 2D heterostructures. In [10], limits of mobility improving in 2D GaAs structure were theoretically exhibited for extremely low temperatures. At T = 1 K the mobility achieved 108 cm2/V s and was limited by background impurities of the reduced concentration 1012 cm−3. At liquid helium temperatures, the mobility was dropped significantly and limited by acoustic phonon scattering.


There are much less experimental data on mobility in mercury–cadmium–telluride 2D structures. Mobilities were studied experimentally in SL with thin wells [11] with the direct band structure, but they had not get any mobility increasing in comparison with 3D. In [12] it was shown that inverted band structure should be realised in structures with QW thicker then ~6.5 nm. 


The high mobility (2.8(105 cm2/(V(s)) was observed in the QW CdTe/HgTe/CdTe of 16 nm width with inverted band structure at the temperature 3K [13]. On the other hand, for bulk MCT it was shown [14] that electron mobility increases in the neighborhood of composition value of 0.16 up to 106 cm2/(V(s) at the liquid nitrogen temperature. 

Here, we try to define limiting mechanisms of 2D mobility in CdTe/HgCdTe/CdTe hetero structures at moderate cooling. We modeled electron relaxation processes in CdTe/Hg1–xCdxTe/CdTe QWs with thick wells and inverted band scheme to find the possibility to increase the in–plane mobility in these structures. Our studies are aimed to estimate the optimal QW parameters for the creation of high-speed and moderately cooled THz detectors, namely field-effect transistors with high mobilities in shallow channel.


1. The QW band structure and properties


1.1. Band scheme and properties of QW 


Inside CdTe/Hg1–xCdxTe/CdTe QW for compositions 0 < x < 0.16, the inverted band scheme is realized [15], while the direct band scheme is realized in the barriers (Fig. 1). All calculations are carried out for the liquid nitrogen temperature T = 77 K. In this chapter, we describe some properties of the system under consideration. 


The concentration of charged impurities in these QWs can be about 1014 – 1016 cm–3 [6, 7, 16].  Due to the inverted band scheme and high density of states for heavy holes, the Fermi level lies higher than the bottom of the conduction band in the well. 


For undoped and lightly doped Hg1–xCdxTe at liquid nitrogen temperatures, there are two dominant relaxation mechanisms for localized electrons in bulk crystals – scattering by longitudinal optical (LO) phonons and scattering by charged impurities [14, 16]. With the growth of temperature, the role of scattering by optical phonons increases, while scattering by charged impurities becomes less important. In heterostructures, additional important scattering on interface roughness appears. In this paper, we discuss all these mechanisms. Also, we estimate scattering by acoustic phonons to prove that it is minor scattering mechanism for our system. 

The scattering of localized electrons in the QW with an inverted band scheme qualitatively differs from the scattering in the direct band heterostructures. In direct band semiconductors, the conduction band is formed by the levels with Г6 symmetry, while the light-hole and the heavy-hole bands are formed by Г8 levels. In semiconductors with the inverted band scheme, Г6 and Г8 levels change their positions – and now the conduction band is formed by Г8 levels, the heavy-hole band has the same symmetry as the conduction band and touches the conduction band at k = 0, while the light-hole band is formed by Г6 levels and lies below the conduction band. 


There are contradicting experimental results in literature, which describe the valence-band offset Δ in the HgTe/CdTe QWs. The most cited values are 0.35 eV [19, 20] and 0.55 eV at x=0, they are supposed to change linearly with the composition. In our calculations, we use the value 0.55((1–x) eV [21, 22, 23] (see Fig. 1). 


1.2. Interface levels and wave functions 


In direct band QWs, all levels of localized electrons lie above the bottom of the conduction band. In general, the Fermi level lies in the band gap of such structures. Thus, electron levels are located much higher than the Fermi level, and their occupancy influences the electron scattering processes only slightly. 



Fig. 1. Band scheme of QW CdTe/Hg1–xCdxTe/CdTe along the z axis of the QW, where L is the QW width, Δ – valence band offset, VS – conduction band offset and EA – negative band gap inside the QW, EB – positive band gap of the barrier. VS = (EB – Δ – EA).


CdTe/Hg1–xCdxTe/CdTe QWs with the composition 0 < x < 0.16 have an inverted band scheme inside the well and a direct band scheme in barriers [15, 17]. Thus in such structures there exist one or two electron levels which lie below the bottom of conduction band of the well (see Fig. 3) due to the mixture of the states of different symmetry and due to the change of the sign of effective mass when crossing the interface [15]. These levels are built from evanescent states in each of the host layers and are localized on the interfaces (see Fig. 2). They are called “interface” levels [15] and the energy of the ground interface level reduces at small well widths [18, p. 81]. Consequently, one or several levels of localized electrons are located below the Fermi level (see Fig. 3). Such position of these levels drastically changes the occupation of them and influences the electrons scattering. 
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Fig. 3. Dependencies of energy spectra and Fermi level on the well width L. The temperature is taken to be T = 77 K, the composition x = 0.12. EC = 0 is the bottom of the conduction band and EV = –76.6 meV – top of the valence band in the well.


It is important to note that for compositions x that are close to zero, ground level electrons are localized at interfaces of the QW, which leads to the importance of interface scattering. On the other hand, ground level electrons are localized inside the quantum well for the compositions x within the range 0.1 < x < 0.16 (see Fig. 2). In this case, the probability to find electron at interfaces is low and interface scattering is also supposed to be small. In this paper, we consider CdTe/Hg1–xCdxTe/CdTe QW, as an example, for composition x = 0.12. 


Principal features of electron relaxation in the CdTe/Hg1–xCdxTe/CdTe QW are determined by the influence of the ground levels occupation on the scattering processes. 


For undoped QW with the composition x = 0.12 at the temperature T = 77 K, as shown in Fig. 3, the Fermi level is evaluated by alignment of concentrations of electrons and heavy holes. Fermi level varies from 1.8 meV from the Γ8 band bottom of electrons in the well for QW of 20-nm width to 8.6 meV for QW of 60-nm width. The evaluated concentration of electrons in QW varies from 1017 cm–3 for QW of 20 nm width to 4(1016 cm–3 for QW of 60 nm width. 


1.3. Influence of the misfit strain on electron spectra 


To calculate the energy structure of CdTe/
Hg1–xCdxTe/CdTe quantum wells, it is important to consider the band shift and band splitting due to the strains in the heterostructure. These strains arise from lattice mismatch between the materials of the well and the matrix. To estimate such strains, we use the simple approach that assumes that the in-plain lattice parameters of the well material are forced to be the same as appropriate parameters of the barrier material [24, 25]. 


Consequently, the biaxial strain in the layer plane arises inside the well (x, y). The value of this strain can be estimated from the simple formula 
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 [25, 26], where aCdTe and aHgCdTe are the lattice parameters of the appropriate layers in the heterostructure. The values are as follows: aCdTe = 0.6482 nm, aHgTe = 0.64605 nm at T=300 K [27]. For x = 0.12, aHgCdTe = 0.64631 nm. 


With the values of the lattice parameters of the well and barrier, we get the strain components exx = eyy = 0.0029274, ezz = 0. 


According to [28, 34], biaxial strain leads to two effects. The first effect is the alteration of the gap value between Г6 and Г8 bands. The change of this gap is given by [29]: 




(1.1)

where (C – a) is the difference of deformation potentials of conduction and valence bands, respectively. 
(C – a)HgTe = –3.69 eV [29], (C – a)CdTe = – 3.16 eV [30]. For Hg1–xCdxTe with x = 0.12, the value of this parameter is found from the linear approximation 
(C – a)HgCdTe = –3.63 eV. Effective band gap for x = 0.12 is –50.9 meV without strain. Taking into account strain effect, the band gap reaches –72.1 meV. 


The second effect of biaxial tensile strain [31] is in splitting of electron and heavy-holes Г8 states. In this case, the top of Г8 heavy-hole band shifts under the bottom of the Г8 conduction band. The value of such splitting in the point k = 0 is given by [28, 34]:
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From [32, 33], Eq. (1.2) and the Hooke’s law in the simplest form we can estimate the modulus of deformation potential b to be of the order of 1.54 eV. In further calculations, we assume that the difference between the estimated value of b for HgTe and the value of this potential for Hg1–xCdxTe with the composition x = 0.12 is negligible. The calculated splitting between light and heavy ΔГ8 bands is about 9 meV. Thus, the strain introduces the gap between electrons and heavy holes. Consequently the gapless case can not be realized even for x = 0.16.  


2. Boltzmann transport 


Presented in this section is the general theory that is the basis for all further calculations of electron relaxation times and mobilities. We start from the Hamiltonian of the localized electrons being scattered and use the Boltzmann transport equation (BTE) to obtain relaxation times for longitudinal optical phonon scattering and charged impurities scattering. It is assumed that external electric field is applied in the plane of QW. In our calculations, only electron-lattice interactions are taken into account while electron-electron interactions are neglected.  


The Hamiltonian of localized electron can be written as: 




(2.1)


where 
 includes the local fluctuations of the electrostatic potentials due to the defects and lattice vibrations, H0 is unperturbed Hamiltonian, while Hdef 
 is a weak, constant and homogeneous electric field. We use BTE in the simplest form: 
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where 
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  and describe the initial and final states of electron during the scattering process, k( are two-dimensional electron wave-vectors, 
 is the Fermi-Dirac distribution function for localized electrons in the QW, energy E depends on the wave-vector k via the nonparabolic dispersion law, for example in the well this law has the form 
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 [17], where P is the Kane matrix element equal to 8.3(10–8 eV(cm. Using the principle of detailed balance, one can obtain that . The distribution function can be written as sum of symmetric and asymmetric parts: 

f = f S + f A
(2.3)


The sum over the symmetric part f S in Eq. (2.2) is equal to zero. We deal with the homogeneous system that is in the steady state under a uniform electric field. Changing the variable in the derivative in the left-hand side of Eq. (2.2), we obtain: 
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In the present work, we use the simple qualitative approach that operates with k( = 0 k( = 0 wave functions to calculate electron relaxation times and mobilities for different scattering mechanisms. This approach neglects effects of s-p hybridization. Nevertheless, the wave functions correctly describe many principal features of the band structure under consideration, particularly, they correctly describe the localization of electrons in the well and selection rules for interband transitions. Moreover, the energy spectra obtained in terms of the envelope functions approach [17] behave in the same way as such spectra obtained in terms of the 8(8 k(p method [37]. In our calculations, we use nonparabolic dispersion law in order to describe correctly the energy dependence of the density of states. Our approach allows us to calculate and analyze the transition matrix elements for all the considered scattering mechanisms.

3. Two-dimensional electron relaxation 
on LO phonons 


Accounted in the calculations of this chapter is only one scattering mechanism – scattering by longitudinal optical phonons. This mechanism was mentioned above as one of the dominant at the liquid nitrogen temperatures for the bulk crystals of MCT. We calculated relaxation times of two-dimensional electrons to reveal the influence of changes in parameters of the QW on the electron scattering processes. In a strict sense, we cannot introduce the momentum-scattering time for inelastic processes. But the relaxation time can be considered to be a good qualitative estimate for the momentum relaxation time, since phonon emission and absorption result in large changes in the electron momentum. 


The momentum relaxation time (n(k()
 of localized electrons can be introduced from [34] and Eq. (2.4) by means of the momentum relaxation rate for electron gas excited initially into the state: 
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where ( is the angle between the initial and final electron wave-vectors in the process of scattering. 


In [35] it was also proved that the relaxation time approach could be used when phonon energy is higher than the thermal energy kBT. Gelmont et al. compared relaxation-time approximation and Monte-Carlo simulations for polar-optical phonon scattering in GaN and obtained a good agreement between these techniques. Comparison between relaxation-time approximation and Monte-Carlo simulation of electron mobility in Hg1–xCdxTe at liquid nitrogen temperatures for polar-optical phonon scattering was made in [36], also a good agreement was obtained.


For 2D case for steady-state transport under an uniform electric field, we have 
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, , and the asymmetric part of the occupancy function can be found from Eq. (2.4) and Eq. (3.1): 
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For the longitudinal optical phonon scattering, transition probabilities 
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 can be written from Fermi’s golden rule: 
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Where He – ph
 is the Hamiltonian of the electron-phonon interaction, and  is the phonon energy. 


Detailed calculations of the transition probabilities and matrix elements for the longitudinal optical phonon scattering were carried in [34]. To calculate relaxation times for this scattering mechanism, we use the final formula (6.141) from [34] where the states occupancy in the QW is taken into account: 
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where (0 = 20.5 – 15.6x + 5.7x2 and 

(( = 15.2 –15.6x + 8.2x2 are static and high-frequency dielectric permittivities [27, p. 126],  is the concentration of LO phonons at a given temperature, m is the quantum number of the phonon mode, L is the QW width, n and n’ are the quantum numbers of initial and final electron levels during the scattering process, 

 is the initial wave-vector of electron in the layer plane of the QW.


In HgCdTe compounds, two types of longitudinal optical phonons exist the first one is related to HgTe and the other one – to CdTe matrices. These phonons have slightly different energies – 
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= 17.1 meV and = 20.8 meV, respectively [27]. In our calculations, we assume that the relative concentration of HgTe-related phonons is proportional to (1-x), while the concentration of CdTe-related phonons is proportional to x. Relaxation rates in Eq. (3.4) should be calculated for each of these types separately, and then the summary rate should be found from the relation
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One should note that the relaxation time in Eq. (3.4) depends on the electron kinetic energy via wave-vector 

. This relaxation time determines relaxation of the population of the state 
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In equation (3.4), G(n, n(, m) is the square of the overlap integral for electron and phonon wave functions: 
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where 
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and 
are the envelope wave functions of the initial and final states of the localized electrons in the scattering process and 
 is the wave function of the LO phonon, which describes the symmetry of the phonon electrostatic field: 
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(3.6)


The overlap integral   G(n, n(, m)describes the parity selection rules in the process of electron scattering. The integrand should be symmetric to get a non-zero value of G. The relaxation time in Eq. (3.4) for electrons from a level n takes into account the scattering of these electrons within the level as well as transitions of these electrons to other levels in the QW. 


In these structures, the electron ground level always lies below the bottom of the conduction band of the well, while the first level appears inside the band gap at large widths of QW [17]. With the decrease of the QW width, the excited levels climb up, while the ground level goes deeper under the Fermi level. That’s why, 2D electron gas of the ground level is always degenerated, and the degree of degeneracy is determined by the energy interval between the ground level and the Fermi one. The average kinetic energy of electrons on the degenerated level is much higher than the classical value kT for 2D electrons. We calculated how the average kinetic energy of electrons of different levels depends on the QW width, using the classical formula: 
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(3.7)


As can be seen from Fig. 3, the ground electron level is always placed below the Fermi level, while the first excited one is placed below it at L > 20 nm. Dependencies of the average electron kinetic energy on the well width L for three lowest levels of the QW are presented in Fig. 4. One can see that the average kinetic energy of the ground level changes from 3.82 kT to 5.34 kT, while varying the QW width. The average kinetic energy of the first level varies from 1.18 kT to 3.24 kT while this energy for the second level is around 1.04 kT to 1.13 kT. 


Relaxation times for electrons from the bottom of three ground levels of the QW are presented in Fig. 5(a) (higher levels are not considered because the level of their occupancy is negligible). Relaxation times for electrons with an average kinetic energy at these levels are presented in Fig. 5(b).




20


30


40


50


60


0


1


2


3


4


5


Average kinetic energy in units of kT


L, nm


 n=0


 n=1


 n=2




Fig. 4 Dependencies of the average kinetic energies of electrons at the ground (n=0), first (n=1) and second (n=2) levels of CdTe/Hg1-xCdxTe/CdTe QW on the well width L. The temperature is taken to be T=77 K, the composition x=0.12. EC=0 is the bottom of the conduction band and EV= - 76.6 meV – top of the valence band in the well. 
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Fig. 5. LO phonon scattering dependences for relaxation times of electrons with zero in-plane kinetic energy from the ground (n=0), first (n=1) and second (n=2) levels (a) and relaxation times of electrons with the average in-plane kinetic energy from these levels (b) in the CdTe/Hg1-xCdxTe/CdTe QW on the well width L. Temperature T=77 K, composition x=0.12.


The relaxation time of electrons from the bottom of the ground level grows considerably when QW width decreases (see Fig. 5 (a)). Its increase is caused by the growth of the degree of degeneracy of the ground miniband,which leads to decreasing the number of free states where electrons with low kinetic energies can scatter to. Not only the ground, but the first miniband becomes degenerate at large QW widths, when this miniband descends, below the bottom of the conduction band of the well. However, degeneracy of the first level disappears at the small QW widths, when this level is high (see Fig. 3). All other 2D levels at Fig. 3 are nondegenerate. 


The drift mobility of electrons in the QW in the applied in-plane electric field 

F


r


 can be calculated by averaging all the possible electron velocities in this QW. Taking into account the quantization of the wave-vector k along the QW axis and using Eq. (3.2), we can rewrite the latter equation: 
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(3.8)

where relaxation times are given in Eq. (3.4); effective masses and distribution function depend on the level number n and the modulus of the in-plane wave-vector 

^


k


.


High level of degeneracy and high average kinetic energies of electrons of ground and first levels (at large well widths) lead to the substantial contribution of lateral transitions to the processes of electron scattering on LO phonons. During this lateral transition, electrons with huge kinetic energies are scattered to the levels energy change to which from the initial level is much higher than the phonon energy.

4. Electron mobility for charged impurities scattering 


We calculated the mobility of electrons on charged impurities in the QW CdTe/Hg1-xCdxTe/CdTe by modifying the approach of [18], where it is used the approximation T = 0 K, which allows to get simplifications in the calculations. Here, it is considered more general case. Using Fermi’s golden rule and the principle of detailed balance, one can obtain: 
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(4.1)


We will find the solutions of the equations (2.4) and (4.1) in the form of the equations (2.3), (3.2). It is shown in [18] that Eq. (2.3) will be the solution of Eq. (2.4), if relaxation times fulfill the linear equation [18]: 
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(4.2)


We will deal especially with elastic scattering, because scattering by charged impurities changes only the direction of the electron momentum, while the magnitude of this momentum remains unchanged. Transitions between different levels during the scattering process are restricted under this assumption. Consequently, coefficients Ki ( j will be equal to zero, and Eq. (4.2) will be separated by several independent equations for each energy level. 


To calculate the relaxation time, we introduce the additional wave-vector 
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. From the momentum conservation law, we obtain: where ( is the angle between the initial and final wave-vectors of electron in the scattering process. We obtain the formula for the relaxation time on electrons of the n-th level scattered by charged impurities: 
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where 
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. One should note that in the latter formula 
 is not the Dirac delta function as it was at T=0. To find the matrix element , we follow the same procedure as that described in [18] for T = 0. However, we modify the screening function that describes the screening in 2DEG to account the non-zero temperature. According to the semi-classical approach, when q( ( 0 [18, p. 210], the screening function can be found as: 
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. Evaluating the derivative of the electron concentration for non-zero temperature, we obtain the final equation for the screening function: 
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In the limiting case of T = 0 K, fn(0) = 1, 
and Eq. (4.5) reduces to appropriate formula from [18]. Having the explicit Eq. (4.5) for the 
 and substituting the formula for the matrix element from [18] into Eq. (4.3), we obtain the final formula for the relaxation time of the localized electrons on the n-th level, which are scattered by charged impurities at non-zero temperature: 
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(4.6)


The concentration of l-th impurity species (charge 
elZl) is denoted by cl, and the length over which these impurity species are found in the heterostructure is denoted by . The sum is carried out over all kinds of the charged impurities in the system. For CdTe/Hg1–xCdxTe/CdTe QW, one should use the value Z = 1 or 2, having in mind Hg+ interstitials in n-type material or Hg2- in p-type material [38, 39]. 


Distribution of the charged impurities in the system is described by the form-factor gimp: 
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where 
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 is the envelope wave function of the n-th level electrons. The mobility of electrons for each of these levels can be expressed as: 
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The average mobility of electrons for only one scattering mechanism (charged impurities scattering) can be found then as: 




(4.9)


In the n-type QW with the composition x = 0.12 and the concentration of background charged impurities 1014 – 1015 cm–3, the Fermi level varies from 5.3 up to 11.2 meV (see Fig. 3). According to our estimations, background impurities affect electron scattering much stronger than the remote delta-doped layer of the equivalent charge density. Thus, background charged impurities play an important role in the scattering for these QWs. In further calculations, we will treat the case of the background impurities scattering, because these impurities are always present in the QW.

5. Estimation of minor scattering mechanisms


5.1. Scattering by acoustic phonons 


In HgCdTe quantum wells can exist two channels of electron relaxation via the acoustic phonons scattering. These are scattering by the deformation potential interaction mechanism and scattering by the piezoelectric interaction mechanism [34]. However, for the quantum wells, growth direction of which is [001] axis, the piezoelectric interaction is absent [40, p. 48]. So, in this chapter, we will estimate the relaxation time of electrons that scatter on acoustic phonons via deformation potential interaction. 


In layered heterostructures, acoustic waves consist of extended and confined modes. Extended modes propagate through the whole heterostructure in any direction. Confined modes are localized in the layer plane of the well and propagate along this plane. However, due to the small differences between elastic properties of the matrix and quantum well materials, this confinement is weak. Thus, confined modes can be neglected, while extended modes can be approximated by plane waves. The energy of acoustic phonon can be estimated as 
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 [34, 6.135], where sL = 105 cm/s is the sound velocity in the layer plane. For L = 20 nm, the acoustic phonon energy is two orders of magnitude lower than the mean kinetic energy of the ground level electrons (see Fig. 4). Therefore, the scattering can be assumed to be elastic. 


Thus, for estimations we used the simple model [34, 6.137] that assumes the well to be infinitely deep, acoustic phonons to be bulk-like and non-parabolicity of the dispersion law to be neglected: 
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where 
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is the factor that describes the occupancy of the state electron scatters to; assuming the scattering to be elastic [34], we can state . The deformation potential constant (C – a)HgCdTe = 
–3.63 eV 
is (see Eq. (1.1)); m* is the electron effective mass, n0 and n are the numbers of electron levels and  = 5.0625(1017 eV(s/cm4 is the mean elastic constant of the material (taken to be the same as in HgTe), M0 and V0 are the mass and the volume of the primitive cell of HgTe. 

According to our estimates, the relaxation time of the ground level electrons with the average kinetic energy is close to 6(10–10 s for L = 20 nm and 3.8(10–10 s for L = 60 nm; the relaxation time of first level electrons with the average kinetic energy is around 2.6(10–10 s for L = 60 nm.  These times are much larger than appropriate times for longitudinal optical phonon scattering (see Fig. 5 (b)). Consequently, the acoustic phonons scattering is small and can be neglected in the further treatment.


5.2. Scattering on interface roughness 


Very little is known about the microscopic structure of the interface defects so they usually use very simple models for the calculation of scattering by these defects. All estimations are carried out for the well of the 20-nm width, which is the minimal width presented in our calculations. 


To estimate the scattering by interface roughness, we use the model presented in the book of Bastard [18]. In this model, the interface defect is assumed to have the thickness h of one monolayer in the growth direction and have extensions lx and ly in the layer plane. It is assumed that these defects are located far away from each other, so scattering events on different defects are independent from each other. Calculations are made at T = 0 K in the Electric Quantum Limit, which assumes that only the lowest electron sub-band is occupied. In our system, at small well widths electrons scatter from the ground level, therefore this assumption is reasonable. We used the approach from [18], which allows to take into account the sharpness of the electron envelope function at the interface: 
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(5.2)


where kF is the Fermi wave vector, (0(z)is the angle between electron wave vectors before and after the scattering. 
 is defined in Eq. (4.5), (  – envelope wave function of the ground level electrons, Vb – barrier height, m0 – effective mass of the ground level electrons, ((k()

 To estimate the relaxation rate from the latter equation, one should know the average concentration of interface defects Ndef and their average lateral dimensions lx and ly. Lateral dimensions of the defects were taken from [41], which is often used for estimations of the interface scattering in quantum wells. We have found no data about the concentration of interface roughness defects in HgCdTe QWs. Nevertheless, the authors [42] created HgCdTe heterostructures with fixed charges at the interfaces with the concentration within the range 1010 – 5(1010 cm–2. We assume that the concentration of roughness defects Ndef is the same as the concentration of interface fixed charges in the samples of [42]. Thus, we obtain that for ground level electrons with the average kinetic energy, the relaxation time for interface scattering in the well of 20-nm width is close to 10–9  –  7(10–9 s. This relaxation time is an order of magnitude higher than the appropriate time for the longitudinal optical phonon scattering (see Fig. 5 (b), thus the interface scattering can be considered as negligible in the further treatment. 


5.3. Influence of the value of the valence-band offset 


Values of the valence-band offset Δ in the literature are contradicting (see section 1.1). Then, it is important to estimate the influence of variation of this parameter on the mobility of localized electrons. We compared the mobilities for charged impurities scattering and for the LO phonons scattering for two QW widths – 20 and 60 nm. There are the values compared as to the valence-band offset Δ1 = 0.55((1–x) eV and Δ2 = 0.35((1–x) eV. According to our calculations, different values of the valence-band offset lead to the mobilities that differ by approximately 1.5 times at small well widths for each of the scattered mechanisms. For the wide wells, variation of the mobility with the change in the valence-band offset is weaker. 


Thus, we can see that the uncertainty in the value of the valence-band offset strongly affects the magnitude of the electron mobilities, and it is principally impossible to obtain precise numerical results for relaxation times and mobilities. Also, it is impossible to estimate the strain values precisely, because they depend on the other technological heterostructure layers and on the heterostructure growth conditions.  


You can also aim the reduction of stress in the layers. Our calculations show that for the QW with the concentration of n-type charged impurities of 1015 cm–3, the value of strain sufficiently affects the mobility. For example, in the well of 20-nm width, the mobility in the absence of strains is in times greater than such mobility in the presence of the strain (see section 6). Thus, the absence of the strain leads to growth in the electron mobility.


6. Results for electron mobility 
in CdTe/Hg1-xCdxTe/CdTe quantum well 


The average mobility of electrons in the CdTe/
Hg1–xCdxTe/CdTe QW that includes both the LO phonons scattering (Eq. (3.9)) and charged impurities scattering (Eq. (4.9)) can be found as: 
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where the summary mobility of the n-th level electrons is found from the relation 
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Results for the electron mobility for LO-phonon scattering only (Eq. (3.9)) and results for the average mobility that includes two scattering mechanisms (Eq. (6.1)) are plotted in Fig. 6. 


The electron mobility that takes into account only the LO phonons scattering, grows substantially, when the QW width decreases. Therefore, at small charged impurity concentrations the LO phonons scattering dominates, and the average electron mobility also grows at small well widths. When the concentration of charged impurities is greater, the growth of average mobility is partially suppressed. For example, for the concentration of n-type charged impurities 1016 cm–3, the average mobility grows approximately two times only. These results that describe variation of the average electron mobility with the quantum well width can 
be possibly used to optimize growth procedure for CdTe/Hg1–xCdxTe/CdTe QWs with different properties within the same technological line. 


It is important to note that usage of more pure samples of Hg1–xCdxTe with lower concentrations of charged impurities allows one to obtain higher electron mobilities for the charged impurities scattering. In this case, the average electron mobility also is higher. Also, one should note that in this paper we considered the model sample where strain is not relaxed. In the case of using the samples with buffer layers that partially relax the strain, the strain-induced increase of the band gap will be smaller, and the mobility of localized electrons should increase by several times. 



20


30


40


50


60


2E6


4E6


6E6


8E6


1E7


1.2E7


1.4E7


Mobiliy, cm


2


/(Vs)


Well width L, nm


 A


 B


 C




Fig. 6. Electron mobility in the CdTe/Hg1–xCdxTe/CdTe QW. The mobility includes longitudinal optical phonon scattering (LOP) and charged impurities scattering (CI). Line A is for LOP and CI scattering with the concentration 1015 cm–3, line B is for LOP and CI scattering with the concentration 1014 cm–3, line C is for pure LOP scattering mechanism. The parameters used are as follows: temperature T = 77 K; composition x = 0.12.

Unfortunately, the authors do not know the experimental data on the mobility of electrons in the CdTe/Hg1–xCdxTe/CdTe quantum well with inverted band structure at the nitrogen temperature. Therefore, 
it is useful to compare electron mobilities in the CdTe/Hg1–xCdxTe/CdTe QW with inverted band scheme in the well (Fig. 6) with electron mobilities in other 
Hg1–xCdxTe structures at T = 77 K. The electron mobility in bulk undoped Hg1–xCdxTe with the direct band scheme at the composition x = 0.2 is 2.5(105 cm2/(V(s) [27, p. 95]. The electron mobility in bulk HgTe (which has the inverted band scheme) is 2.2(105 cm2/(V(s) [27, p. 95]. 


According to our calculations, the electron mobility in the QW CdTe/Hg1–xCdxTe/CdTe with the concentration of n-type charged impurities 1015 cm–3 is not higher than 6–7(105 cm2/(V(s) for the composition x = 0.2, and it is close to 1–1.2(106 cm2/(V(s) for the composition x = 0. It was shown in [13] that the electron mobilities in the QW CdTe/HgTe/CdTe (at T = 3 K) can reach 2.8(105 cm2/(V(s). From the comparison of these mobilities one can see that the maximal mobility of electrons in Hg1–xCdxTe could be reached in quantum wells with the inverted band scheme inside the well. 


One should note that, at very small QW widths (about 10 nm and less [12]), the width of interfaces becomes comparable with the width of the quantum well. So the scattering by interface roughness [34, p. 249] and the scattering by interface phonons [34, p. 287] become more important and the growth of mobility can be suppressed.


Apparently, we can expect the highest mobility in mercury–cadmium–telluride structures with the inverted band scheme quantum wells at moderate concentrations of charged impurities. Therefore, these structures are of interest for the creation of semiconductor THz detectors based on hot electrons operating under moderate cooling (up to liquid nitrogen temperature) or ambient temperatures. It is known that narrow gap semiconductors are promising materials for direct THz detectors due to high electron mobility, high carrier concentration and low effective masses of electrons [3, 43]. In our case, we should expect the electron relaxation time of about 10-11 s and scattering mean free path of about 50 μm. For this relaxation time, the QW structure provides a strong interaction with THz radiation by the free-carrier Drude absorption mechanism [44] in the frequency range of 100-700 GHz. The high conductivity of degenerate electron gas on the metal type structure provides resistance to the order of a few tens of ohms, which will ensure a good matching with the planar metallic antenna. A large mean free path carriers will implement those structures technologically.

Therefore, the quantum wells with the inverted band scheme HgCdTe are the promising structures for THz detector design. Thus, it is possible to realize detectors on the effect of the electron gas heating, such as hot electron bolometers or field effect transistors with a shallow channel on the basis of the in-plane transport in the quantum well [45].

7. Conclusions 


We have modelled electron relaxation processes in the n-type CdTe/Hg1-xCdxTe/CdTe wide QWs with the inverted band structure at the liquid nitrogen temperatures and for x close to the band inversion value 0.16, for their potential usage as THz range detectors. It was found that the longitudinal optical phonons scattering and charged impurities scattering are dominant mechanisms, while the acoustic phonons scattering and interface roughness scattering can be neglected. It was shown that the electron mobility could reach values of the order of magnitude of 5*106 – 107 cm2/(Vs) for the well widths 60 – 20 nm in such structure. These values could be estimated at the concentration of the diluted charged impurity of 1014 – 1015 cm-3. 


Usage of relaxing buffer layers allows one to reach the partial relaxation of the strains in the quantum well and to increase the mobility by several times. This mobility is an order of magnitude higher than for the QW with the direct band structure and bulk mercury-cadmium-telluride. On the one hand, it places high demands on the quality of the structure. On the other hand, it provides the possibility to implement fast direct terahertz detectors, for example, field effect transistors with the shallow channel based on the quantum well or hot electron bolometer operating at moderate cooling. 

References

1.
P.H. Siegel, THz technology: An overview // Intern. J. High Speed Electronics and Systems 13(2), p. 351-394 (2003).


2.
M.A. Kinch and B.V. Rollin, Detection of millimetre and sub-millimetre wave radiation by free carrier absorption in a semiconductor // Br. J. Appl. Phys. 14, p. 672 (1963).


3.
F. Sizov, THz radiation sensors // Optoelectron. Rev. 18(1), p. 10-36 (2010).


4.
K.D. Mynbaev, N.L. Bazhenov, V.I. Ivanov-Omskii et al., Photoluminescence of CdHgTe epilayers grown on silicon substrates // Technical Phys. Lett. 36(12), p. 1085-1088 (2010).


5.
K.D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii et al., Photoluminescence of CdHgTe based nanoheterostructures // Technical Phys. Lett. 36(12), p. 1099-1102 (2010).


6.
V.I. Ivanov-Omskii, K.D. Mynbaev, N.L. Bazhenov et al., Optical properties of molecular beam epitaxy-grown HgCdTe structures with potential wells // Phys. Status Solidi (c), 7(6), p. 1621-1623 (2010).


7.
S. Dvoretsky, N. Mikhailov, Yu. Sidorov, V. Shvets, S. Danilov, B. Wittman, and S. Ganichev, Growth of HgTe quantum wells for IR to THz detectors // J. Electron. Mater. 39(7), p. 918-923 (2010).


8.
M. Pociask, I.I. Izhnin, K.D. Mynbaev, A.I. Izhnin, S.A. Dvoretsky, N.N. Mikhailov, Yu.G. Sidorov, V.S. Varavin, Blue-shift in photoluminescence of ion-milled HgCdTe films and relaxation of defects induced by the milling // Thin Solid Films, 518(14), p. 3879-3881 (2010).


9.
D.A. Kozlov, Z.D. Kvon, N.N. Mikhailov, S.A. Dvoretsky, J.C. Portal, Cyclotron resonance in a two-dimensional semimetal based on a HgTe quantum well // Pis’ma v ZhETF, 93(3), p. 186-189 (2011), in Russian..


10.
E.H. Hwang, S. Das Sarma, Limit to two-dimensional mobility in modulation-doped GaAs quantum structures: How to achieve a mobility of 100 million // Phys. Rev. B, 77(23), 235437 (2008).


11.
J.R. Meyer, D.J. Arnold, C.A. HofFman, and F.J. Bartoli, Free-carrier transport in superlattices: Smooth transition between the quasi-two-dimensional and uniform three-dimensional limits // Phys. Rev. B, 45(3), p. 1295-1304 (1992).

12.
J.R. Meyer, D.J. Arnold, C.A. HofFman, F.J. Bartoli, L.R. Ram-Mohan, Electron and hole in-plane mobilities in HgTe-CdTe superlattices // Phys. Rev. B, 46(7), p. 4139-4146 (1992).


13.
E.B. Olshanetsky, S. Sassine, Z.D. Kvon, N.N. Mikhailov, S.A. Dvoretsky, J.C. Portal, A.L. Aseev, Quantum Hall liquid-insulator and plateau-to-plateau transitions in a high mobility 2DEG in a HgTe quantum well // Pis’ma v ZhETF, 84(10), p. 661-665 (2006), in Russian.


14.
J.J. Dubowski, T. Dietl, W. Szymanska, R.R. Gakazka, Electron scattering in CdxHg1–xTe // J. Phys. Chem. Solids, 42(5), p. 351-362 (1981).


15.
G. Bastard, Theoretical investigations of superlattice band structure in the envelope-function approximation // Phys. Rev. B, 25(12), p. 7584-7597 (1982).


16.
W. Walukiewicz, Electron mobility and thermoelectric power in pure mercury telluride // J. Phys. C: Solid State Phys. 9(10), p. 1945 (1976).


17.
E.O. Melezhik, J.V. Gumenjuk-Sichevska, and F.F. Sizov, Simulation of relaxation times and energy spectra of the CdTe / CdxHg1–xTe / CdTe quantum well for variable valence band offset, well width, and composition x // Semiconductors, 44(10), p. 1321-1327 (2010).


18.
G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures. Halsted Press, New York, 1988.


19.
E.A. Kraut, The effect of a valence-band offset on potential and current distributions in HgCdTe heterostructures // J. Vac. Sci. Technol. A, 7(2), p. 420-423 (1989).


20.
P.M. Hui, H. Ehrenreich, N.F. Johnson, A possible resolution of the valence-band offset controversy in HgTe/CdTe superlattices  // J. Vac. Sci. Technol. A 7(2), pp. 424-426 (1989).


 21.
M. Truchsess, V. Latussek, C. R. Becker, E. Batke, Temperature dependent investigation of the HgTeCdTe valence band offset // Journal of Crystal Growth 159, pp. 1128-1131 (1996).


22.
C.R. Becker, V. Latussek, M. Li, A. Pfeuffer-Jeschke, G. Landwehr, Valence band offset in HgTe / Hg1–xCdxTe superlattices // J. Electron. Mater. 28(6), p. 826-829 (1999).


23.
D. Eich, K. Ortner, U. Groh, Z.H. Chen, C.R. Becker, G. Landwehr, R. Fink, E. Umbach, Band discontinuity and band gap of MBE grown HgTe/CdTe(001) heterointerfaces studied by k-resolved photoemission and inverse photoemission // Phys. Stat. Sol. (a), 173, p. 261-267 (1999).


24.
J. Downes, D.A. Faux, Calculation of strain distributions in multiple-quantum-well strained-layer structures // J. Appl. Phys. 77, p. 2444-2447 (1995).


25.
E. Melezhik, O. Korotchenkov, Modeling boundary conditions for computation of piezoelectric fields in quantum dots with image charge analogy // J. Appl. Phys. 102, 013503 (2007).


26.
E. Melezhik, O. Korotchenkov, Elastic fields of quantum dots in semi-infinite matrices: Green’s function analytical analysis // J. Appl. Phys. 105, 023525 (2009).


27.
A.V. Liubchenko, E.A. Salkov, F.F. Sizov, Physical basis of semiconductor infrared photoelectronics (Naukova Dumka, Kyiv, 1984) (in Russian).


28.
G.L. Bir, G.E. Pikus, Simmetriya i deformacionnye e'ffekty v poluprovodnikah (Nauka, Moscow, 1972) (in Russian).


29.
V. Latussek, C.R. Becker, G. Landwehr, R. Bini and L. Ulivi, Deformation potentials of the semimetal HgTe // PRB 71, pp. 125305-125311 (2005).


30.
A.E. Merad, M.B. Kanoun, G. Merad, J. Cibert, H. Aourag, Full-potential investigation of the electronic and optical properties of stressed CdTe and ZnTe // Mat. Chem. Phys. 92(2), pp. 333-339 (2005).


31.
E.B. Olshanetsky, Z.D. Kvon, N.N. Mikhailov, E.G. Novik, I.O. Parm, S.A. Dvoretsky, Two-dimensional semimetal in HgTe-based quantum wells with surface orientation (100) // Sol. State. Comm. 152(4), pp. 265-267 (2012).


32.
Fu. Liang, C. L. Kane, Topological insulators with inversion symmetry  // PRB 76(4), pp. 045302-045318 (2007).


33.
R.V. Goldstein, V.A. Gorodtsov, D.S. Lisovenko, Young`s modulus of cubic auxetics  // Letters on materials 1(3), pp. 127-132 (in Russian) (2011).



34.
V. Mitin, A. Kochelap, A. Stroscio, Quantum Heterostructures: microelectronics and optoelectronics (Cambridge Univercity Press, Cambridge, 1999).


35.
B. Gelmont, K. Kim, M. Shur, Monte Carlo simulation of electron transport in gallium nitride // J. Appl. Phys. 74(3), pp. 1818-1821 (1993).


36.
Sang Dong Yoo, Kae Dal Kwack, Theoretical calculation of electron mobility in HgCdTe // J. Appl. Phys. 81(2), pp. 719-725 (1997).


37.

E. G. Novik, A. Pfeuffer-Jeschke, T. Jungwirth, V. Latussek, C.R. Becker, G. Landwehr, H. Buhmann, and L.W. Molenkamp, Band structure of semimagnetic Hg1−yMnyTe quantum wells // Phys. Rev. B 72(3), pp. 035321-035332 (2005).


38.
H.G. Robinson, D.H. Mao, B.L. Williams, S. Hollander-Gleixner, J.E. Yu, and C.R. Helms, Modeling ion implantation of HgCdTe // J. Electron. Mater. 25(8), p. 1336-1340 (1996).


39.
B.L. Williams, H.G. Robinson, C.R. Helms, Ion dependent interstitial generation of implanted mercury cadmium telluride // Appl. Phys. Lett. 71(5), p. 692-694 (1997).


40.
M.A. Kinch, Fundamentals of Infrared Detector Materials. SPIE, Washington, 2007.


41.
T. Ando, Self-consistent results for a GaAs/
AlxGa1-xAs heterojunction. II. Low temperature mobility // J. Phys. Soc. Japan, 51(12), p. 3900-3907 (1982).


42.
V. Ariel, V. Garber, D. Rosenfeld, G. Bahir, V. Richter, N. Mainzer, A. Sher, Electrical and structural properties of epitaxial CdTe/HgCdTe interfaces // J. Electron. Mater. 24(9), p. 1169-1174 (1995).


43.
V.N. Dobrovolsky, F.F. Sizov, A room temperature, or moderately cooled, fast THz semiconductor hot electron bolometer // Semicond. Sci. Technol. 22, p. 103-106 (2007).


44.
N.A. Kabir, Y. Yoon, J.R. Knab et al., Terahertz transmission characteristics of high-mobility GaAs and InAs two-dimensional-electron-gas systems // Appl. Phys. Lett. 89(13), p. 132109-132111 (2006).


45.
F. Sizov, A. Golenkov, D. But, M. Sakhno, V. Reva, Sub-THz radiation room temperature sensitivity of long-channel silicon field effect transistors // Opto-Electronics Rev. 20(2), p. 194-199 (2012). 












































































�


Fig. 2. Electron wave functions for the QW width L=50 nm. The horizontal axis corresponds to z coordinate; peaks of the wave functions are at the hetero-interfaces. The vertical axis represents the magnitude of the wave function in arbitrary units (a. u.). The upper row corresponds to the composition x=0 while the lower row corresponds to the composition x=0.12.
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