Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 1. P. 020-025.
https://doi.org/10.15407/spqeo18.01.020


                                                                 

References

1.    A. Kolodziejczak-Radzimska, T. Jesionowski, Zinc oxide-from synthesis to application: a review. Materials, 7, p. 2833-2881 (2014).
https://doi.org/10.3390/ma7042833
 
2.    Z.H. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter, 16, p. R829-R858 (2004).
https://doi.org/10.1088/0953-8984/16/25/R01
 
3.    S.A. Studenikin, N. Golego, M. Cocivera, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys. 84(4), p. 2287-2294 (1998).
https://doi.org/10.1063/1.368295
 
4.    A. Ortiz, M. Garcia J.C. Alonso, C. Falcony and J.A. Hernandez, Photoluminescent characteristics of lithium-doped zinc oxide films deposited by spray pyrolysis. Thin Solid Films, 293, p. 103-107 (1997).
https://doi.org/10.1016/S0040-6090(96)09114-6
 
5.    R.M. Nyffenegger, B. Craft, M. Shaaban, S. Gorer, G. Erley, R.M. Penner, A hybrid electrochemical/chemical synthesis of zinc oxide nanoparticles and optically intrinsic thin films. Chem. Mater. 10, p. 1120-1129 (1998).
https://doi.org/10.1021/cm970718m
 
6.    M. Izaki, T. Omi, Characterization of transparent zinc oxide films prepared by electrochemical reaction. J. Electrochem. 144(6), p. 1949-1952 (1997).
https://doi.org/10.1149/1.1837727
 
7.    C.M. Mo, Y.H. Li, Y.S. Liu, Y. Zhang, L.D. Zhang, Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels. J. Appl. Phys. 83, p. 4389-4391 (1998).
https://doi.org/10.1063/1.367198
 
8.    U. Koch, A. Fojtik, H. Weller, A. Henglein, Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem. Phys. Lett. 122, p. 507-510 (1985).
https://doi.org/10.1016/0009-2614(85)87255-9
 
9.    M. Haase, H. Weller, A. Henglein, Photochemistry and radiation chemistry of colloldal semiconductors. 23. Electron storage on ZnO particles and size quantization. J. Phys. Chem. 92, p. 482-487 (1988).
https://doi.org/10.1021/j100313a047
 
10.    D.W. Bahnemann, C. Kormann, M.R. Hoffmann, Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study. J. Phys. Chem. 91, p. 3789-3798 (1987).
https://doi.org/10.1021/j100298a015
 
11.    P. Hoyer, H. Weller, Size-dependent redox potentials of quantized zinc oxide measured with an optically transparent thin layer electrode. Chem. Phys. Lett. 221, p. 379-384 (1994).
https://doi.org/10.1016/0009-2614(94)00287-8
 
12.    L. Spanhel, M.A. Anderson, Semiconductor clusters in the sol-gel process: Quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids. J. Am. Chem. Soc. 113, p. 2826-2833 (1991).
https://doi.org/10.1021/ja00008a004
 
13.    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, p. 710-712 (1992).
https://doi.org/10.1038/359710a0
 
14.    J.S. Beck, J.C. Vartuli, W.J. Rothet al., A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, p. 10834-10843 (1992).
https://doi.org/10.1021/ja00053a020
 
15.    K. Cassiers, T. Linssen, M. Mathieu et al., A detailed study of thermal, hydrothermal, and mechanical stabilities of a wide range of surfactant assembled mesoporous silicas. Chem. Mat. 14, p. 2317-2324 (2002).
https://doi.org/10.1021/cm0112892
 
16.    H. Sun, Q. Tang, Yu Du, X. Liu, Yu. Chen, Ya.Yang, Mesostructured SBA-16 with excellent hydrothermal, thermal and mechanical stabilities: Modified synthesis and its catalytic application. J. Colloid and Interface Sci. 333, p. 317-323 (2009).
https://doi.org/10.1016/j.jcis.2009.01.071
 
17.    B. Yao, Hu. Shi, Hu. Bi, L. Zhang, Optical properties of ZnO loaded in mesoporous silica. J. Phys.: Condens. Matter, 12, p. 6265-6270 (2000).
https://doi.org/10.1088/0953-8984/12/28/322
 
18.    C. Bouvy, W. Marine, B.-L. Su, ZnO/mesoporous silica nanocomposites prepared by the reverse micelle and the colloidal methods: Photoluminescent properties and quantum size ffect. Chem. Phys. Lett. 438(1-3), p. 67-71 (2007).
https://doi.org/10.1016/j.cplett.2007.02.061
 
19.    P.B. Lihitkar, S. Violet, M. Shirolkar, Ja. Singh, O.N. Srivastava, R.H. Naik, S.K. Kulkarni, Confinement of zinc oxide nanoparticles in ordered mesoporous silica MCM-41. Mater. Chem. and Phys. 133, p. 850-856 (2012).
https://doi.org/10.1016/j.matchemphys.2012.01.106
 
20.    K. Sowri Babu, A. Rama Chandra Reddy, Ch. Sujatha, K. Venugopal Reddy, N. Venkatathri, Structural and optical properties of ZnO nanoclusters supported on mesoporous silica. Optoelectron. and Adv. Mater. − Rapid Communs. 5(9), p. 943-947 (2011).
 
21.    M. Kruk, M. Jaroniec, Characterization of MCM-48 silicas with tailored pore sizes synthesized via a highly efficient procedure. Chem. Mater. 12, p. 1414-1421 (2000).
https://doi.org/10.1021/cm990764h
 
22.    D. Zhao, J. Feng, Q. Huo et al., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279, p. 548-552 (1998).
https://doi.org/10.1126/science.279.5350.548
 
23.    F. Kleitz, D.N. Liu, G.M. Anilkumar, I. S. Park, L.A. Solovyov, A.N. Shmakov, R. Ryoo, Large cage face-centered-cubic Fm3m mesoporous silica: Synthesis and structure. J. Phys. Chem. B, 107(51), p. 14296-14300 (2003).
https://doi.org/10.1021/jp036136b
 
24.    Q. Jiang, Z.Y. Wu, Y.M. Wang, Y. Cao, C.F. Zhu, J.H. Zhu, Fabrication of photoluminescent ZnO/SBA-15 through directly dispersing zinc nitrate into the as-prepared mesoporous silica occluded with template. J. Mater. Chem. 16, p. 1536-1542 (2006).
https://doi.org/10.1039/b516061h
 
25.    K. Dimos, I.B. Koutselas, M.A. Karakassides, Synthesis and characterization of ZnS nanosized semiconductor particles within mesoporous solids. J. Phys. Chem. B, 110, p. 22339-22345 (2006).
https://doi.org/10.1021/jp064275y
 
26.    S. Brunauer, L.S. Deming, W.S. Deming, E. Teller, On a theory of the van der Waals adsorption of gases. J. Am. Phys. Soc. 62, p. 1723-1732 (1940).
https://doi.org/10.1021/ja01864a025
 
27.    R.M. Grudzien, B.E. Grabicka, M. Jaroniec, Effective method for removal of polymeric template from SBA-16 silica combining extraction and temperature-controlled calcinations. J. Mater. Chem. 16, p. 819-823 (2006).
https://doi.org/10.1039/B515975J
 
28.    Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 72, p. 3270-3272 (1998).
https://doi.org/10.1063/1.121620
 
29.    Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys.Lett. 78, p. 407-409 (2001).
https://doi.org/10.1063/1.1342050
 
30.    F. Hamdani, A. Botchkarev, W. Kim et al., Optical properties of GaN grown on ZnO by reactive molecular beam epitaxy. Appl. Phys. Lett. 70, p. 467-469 (1997).
https://doi.org/10.1063/1.118183
 
31.    W.S. Shi, O. Agyeman, C.N. Xu, Enhancement of the light emissions from zinc oxide films by controlling the post-treatment ambient. J. Appl. Phys. 91, p. 5640 (2002).
https://doi.org/10.1063/1.1466527
 
32.    M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber, P.D. Yang, Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, p. 113-116 (2001).
https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
 
33.    X.M. Sun, Z.X. Deng, Y.D. Li., Self-organized growth of ZnO single crystal columns array. Chem. Phys. 80, p. 366-370 (2003).
https://doi.org/10.1016/s0254-0584(02)00523-0
 
34.    Z. Fang, Yi. Wang, D. Xu, Yo. Tan, Xu.Liu, Blue luminescent center in ZnO films deposited on silicon substrates. Opt. Mater. 26, p. 239-242 (2004).
https://doi.org/10.1016/j.optmat.2003.11.027
 
35.    N.O. Korsunska, L.V. Borkovska, B.M. Bulakh, L.Yu. Khomenkova, V.I. Kushnirenko, I.V. Markevich, The influence of defect drift in external electric field on green luminescence of ZnO single crystals. J. Lumin. 102-103, p. 733-736 (2003).
https://doi.org/10.1016/S0022-2313(02)00634-8