Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 1. P. 046-052.
https://doi.org/10.15407/spqeo18.01.046


                                                                 

References

1.    E. Le Ru, P. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects, first ed. Elsevier, Amsterdam, 2009.
 
2.    I. Martina, R. Wiesinger, D. Sembrih-Simbürger, M. Schreiner, Micro-Raman characterization of silver corrosion products: Instrumental set up and reference database. Raman Spectroscopy, 9, p. 1-8 (2012).
 
3.    Chuan-Bao Wang, G. Deo, I.E. Wachs, Interaction of polycrystalline silver with oxygen, water, carbon dioxide, ethylene, and methanol: in situ Raman and catalytic studies. J. Phys. Chem. B, 103, p. 5645-5656 (1999).
https://doi.org/10.1021/jp984363l
 
4.    G.I.N. Waterhouse, G.A. Bowmaker, J.B. Metson, The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study. Phys. Chem. Chem. Phys. 3, p. 3838-3845 (2001).
https://doi.org/10.1039/b103226g
 
5.    G.I.N. Waterhouse, G.A. Bowmaker, J.B. Metson, Mechanism and active sites for the partial oxidation of methanol to formaldehyde over an electrolytic silver catalyst. Applied Catalysis A: General, 265, p. 85-101 (2004).
https://doi.org/10.1016/j.apcata.2004.01.016
 
6.    R. Liping, D. Weilin, Y. Xinli, C. Yong, X. Zaiku, F. Kangnian, Transformation of various oxygen species on the surface of electrolytic silver characterized by in situ Raman spectroscopy. Chin. J. Catal. 27(2), p. 115-118 (2006).
https://doi.org/10.1016/S1872-2067(06)60009-0
 
7.    Z. Zhao, M.A. Carpenter, Support-free bimodal distribution of plasmonically active Ag/AgOx nanoparticle catalysts: attributes and plasmon enhanced surface chemistry. J. Phys. Chem. C, 117(21), p. 11124-11132 (2013).
https://doi.org/10.1021/jp400837r
 
8.    Z. Pan, A. Zabalin, A. Veda, M. Guo, M. Groza, A. Burger, R. Mu, S.H. Morgan, Surface-enhanced Raman spectroscopy using silver-coated porous glass-ceramic substrates. Applied Spectroscopy, 59(6), p. 782-786 (2005).
https://doi.org/10.1366/0003702054280658
 
9.    S. Chan, S. Kwon, T-W. Koo, L.P. Lee, A.A. Berlin, Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores. Adv. Mater. 75(19), p. 1595-1598 (2003).
https://doi.org/10.1002/adma.200305149
 
10.    S.N. Terekhov, P. Mojzes, S.M. Kachan et al., A comparative study of surface-enhanced Raman scattering from silver-coated anodic aluminum oxide and porous silicon. Raman Spectroscopy, 42, p. 12-20 (2011).
https://doi.org/10.1002/jrs.2661
 
11.    K. Grytsenko, Yu. Kolomzarov, O. Lytvyn, T. Doroshenko, V. Strelchuk, SERS of dye film deposited onto gold nano-clusters. Semiconductor Physics, Quantum Electronics & Optoelectronics, 13(2), p. 151-153 (2010).
 
12.    L.H. Qian, X.Q. Yan, T. Fujita et al., Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements. Appl. Phys. Lett. 90, p. 153120 (1-3) (2007).
 
13.    C.A. Smyth, I. Mirza, J.G. Junney, E.M. Mc Cabe, Surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticle films produced by pulsed laser deposition. Appl. Surf. Sci. 264, p. 31-35 (2013).
https://doi.org/10.1016/j.apsusc.2012.09.078
 
14.    E.B. Kaganovich, S.A. Kravchenko, L.S. Maksimenko et al., Polarization properties of porous gold and silver films. Optics and Spectroscopy, 110(4), p. 513-521 (2011).
https://doi.org/10.1134/S0030400X11040126
 
15.    E.G. Manoilov, Optical and photoluminescence properties of Ag/Al2O3 nanocomposite films obtained by pulsed laser deposition. Semiconductor Physics, Quantum Electronics & Optoelectronics, 12(2) p. 298-301 (2009).
 
16.    E.B. Kaganovich, I.M. Krishchenko, E.G. Manoilov, N.P. Maslak-Gudyma, V.V. Kremenitskiy, Structure and optical properties of gold and silver porous films obtained by pulsed laser deposition in vacuum. Nanosystems, Nanomaterials, Nanotechnologies, 10(4), p. 859-868 (2012).
 
17.    A.D. Mc Farland, R.P. Van Duyne, Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. NanoLett. 3(8), p. 1057 (2003).
https://doi.org/10.1021/nl034372s
 
18.    S. Hayashi, R. Koga, M. Ohtuji, K. Yamamoto, and M. Fujii, Surface plasmon resonances in gas-evaporated Ag small particles: Effects of aggregation. Solid State Communs. 76, p. 1067 (1990).
https://doi.org/10.1016/0038-1098(90)90085-P