Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 1. P. 057-062.
https://doi.org/10.15407/spqeo18.01.057


                                                                 

References

1. P. Mohan, J. Motohisa, T. Fukui, Realization of conductive InAs nanotubes based on lattice-mismatched InP/InAs core-shell nanowires. Appl. Phys. Lett. 88(1), p. 013110-013115 (2006).
https://doi.org/10.1063/1.2161576
 
2. P. Mohan, J. Motohisa, T. Fukui, Fabrication of InP/InAs/InP core-multishell heterostructure nanowires by selective area metalorganic vapour phase epitaxy. Appl. Phys. Lett. 88(13), p. 133105-133118 (2006).
https://doi.org/10.1063/1.2189203
 
3. M. Heigoldt, J. Arbiol, D. Spirkoska et al., Long range epitaxial growth of prismatic heterostructures on the facets of catalyst-free GaAs nanowires. J. Mater. Chem. 19, p. 840-848 (2009).
https://doi.org/10.1039/b816585h
 
4. A. Fontcuberta i Morral, D. Spirkoska, J. Arbiol, M. Heigoldt, J. R. Morante, G. Abstreiter, Prismatic quantum heterostructures synthesized on molecular-beam epitaxy GaAs nanowires. Small, 4, p. 899-903 (2008).
https://doi.org/10.1002/smll.200701091
 
5. O.M. Makhanets, N.R. Tsiupak, O.M. Voitsekhivska, Intensities of quantum transitions in hexagonal nanotubes within the exciton spectral range. Semiconductor Physics, Quantum Electronics & Optoelectronics, 15(2), p. 156-161 (2012).
https://doi.org/10.15407/spqeo15.02.156
 
6. O.M. Makhanets, N.R. Tsiupak, V.I. Gutsul, Phonon spectra and electron-phonon interaction in a combined cylindrical semiconductor nanotube. Ukr. J. Phys. 57(10), p. 1060-1068 (2012).
 
7. O.M. Makhanets, V.I. Gutsul, N.R. Tsiupak, O.M. Voitsekhivska, Exciton spectrum in multi-shell hexagonal semiconductor nanotube. Condensed Matter Physics.15(3), p. 33704: 1-9 (2012).
 
8. J. Arbiol, E. Comini, G. Faglia, G. Sberveglieri and J.R. Morante, Orthorhombic Pbcn SnO2 nanowires for gas sensing applications. J. Cryst. Growth, 310(1), p. 253-260 (2008).
https://doi.org/10.1016/j.jcrysgro.2007.10.024
 
9. Y. Qin, X.D. Wang and Z.L. Wang, Microfibre−nanowire hybrid structure for energy scavenging. Nature, 451(7180), p. 809-813 (2008).
https://doi.org/10.1038/nature06601
 
10. F. Qian, Y. Li, S. Gradeak, H.-G. Park, Y. Dong, Y. Ding, Z.L. Wang and C.M. Lieber, Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Materials, 7(9), p. 701-706 (2008).
https://doi.org/10.1038/nmat2253
 
11. M. Tkach and V. Holovatsky, Lifetime of electron and hole quasi-stationary states in a spherical nanoheterosystem b-HgS/ b-CdS/ b-HgS. Ukr. J. Phys., 45(8), p. 972-975 (2000).
 
12. N.V. Tkach, V.A. Holovatsky, O.N. Voitsekhivska, On the spectra of electrons and holes in an open spherical nanoheterostructure (through the example of GaAs/AlxGa1−xAs/GaAs). Semiconductors, 34(5), p. 583-588 (2000).
https://doi.org/10.1134/1.1188032
 
13. N.V. Tkach and V.A. Golovatskii, Quasi-stationary states of electrons and holes in an open composite cylindrical quantum wire. Physics of the Solid State, 43(2), p. 365-372 (2001).
https://doi.org/10.1134/1.1349489
 
14. N.V. Tkach, Yu.A. Seti, Evolution of the electron spectrum of spherically symmetric states under the transition from a closed double-well dot to a simple open spherical quantum one. Ukr. J. Phys. 51(9), p. 908-916 (2006).
 
15. N.V. Tkach, Yu.A. Seti, G.G. Zegrya, Electron properties of open semiconductor quantum dots. Technical Phys. Lett. 33(1), p. 35-39 (2007).
https://doi.org/10.1134/S1063785007010105