Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 1. P. 063-070.
https://doi.org/10.15407/spqeo18.01.063


                                                                 

References

1. S. Gallis, V. Nikas, H. Suhag, M. Huang, and A.E. Kaloyeros, White light emission from amorphous silicon oxycarbide a-SiCxOy thin films: Role of composition and postdeposition annealing. Appl. Phys. Lett. 97, 081905 (2010).
https://doi.org/10.1063/1.3482938
 
2.    Y. Ding, H. Shirai, White light emission from silicon oxycarbide films prepared by using atmospheric pressure microplasma jet. J. Appl. Phys. 105, 043515 (2009).
https://doi.org/10.1063/1.3080129
 
3.    S. Hayashi, M. Kataoka, and K. Yamamoto, Photoluminescence spectra of carbon clusters embedded in SiO2. Jpn. J. Appl. Phys. Part 2, 32, p. L274 (1993).
https://doi.org/10.1143/JJAP.32.L274
 
4.    Y.H. Yu, S.P. Wong, and I.H. Wilson, Visible photoluminescence in carbon-implanted thermal SiO2 films. phys. status solidi (a), 168, p. 531 (1998).
 
5.    J. Zhao, D.S. Mao, Z.X. Lin, B.Y. Jiang, Y.H. Yu, X.H. Liu, H.Z. Wang, and G.Q. Yang, Intense short-wavelength photoluminescence from thermal SiO2 films co-implanted with Si and C ions. Appl. Phys. Lett. 73, p. 1838 (1998).
https://doi.org/10.1063/1.122299
 
6.    X.D. Zhou, F. Ren, X.H. Xiao, J.X. Xu, Z.G. Dai et al., Origin of white light luminescence from Si+/C+ sequentially implanted and annealed silica. J. Appl. Phys. 111, 084304 (2012).
https://doi.org/10.1063/1.3703668
 
7.    S.Y. Seo, K.S. Cho, and J.H. Shin, Intense blue−white luminescence from carbon-doped silicon-rich silicon oxide. Appl. Phys. Lett. 84, p. 717 (2004).
https://doi.org/10.1063/1.1645989
 
8.    A. Vasin, Y. Ishikawa, N. Shibata, J. Salonen, and V.-P. Lehto, Photoluminescence from carbon-incorporated silicon oxide fabricated by preferential oxidation of silicon in nano-structured Si:C layer. Jpn. J. Appl. Phys. 46, p. L465 (2007).
https://doi.org/10.1143/JJAP.46.L465
 
9.    Y. Ishikawa, A. Vasin, J. Salonen, S. Muto, V.S. Lysenko, A.N. Nazarov, N. Shibata, and V.-P. Lehto, Color control of white photoluminescence from carbon incorporated silicon oxide. J. Appl. Phys. 104, 083522 (2008).
https://doi.org/10.1063/1.3003079
 
10.    A. Karakuscu, R. Guider, L. Pavesi, and G.D. Soraru, Broad-band tunable visible emission of sol-gel derived SiBOC ceramic thin films. J. Am. Ceram. Soc. 92, p. 2969 (2009).
https://doi.org/10.1111/j.1551-2916.2009.03343.x
 
11.    A.V. Vasin, S.P. Kolesnik, A.A. Konchits, V.I. Kushnirenko, V.S. Lysenko, A.N. Nazarov, A.V. Rusasky and S. Ashok, Effects of hydrogen bond redistribution on photoluminescence of a-SiC:H films under thermal treatment. J. Appl. Phys. 99, 113520 (2006).
https://doi.org/10.1063/1.2198935
 
12.    A.V. Vasin, S.P. Kolesnik, A.A. Konchits, A.V. Rusavsky, V.S. Lysenko, A.N. Nazarov, Y. Ishikawa, and Y. Koshka, Paramagnetic defects and light-emission of carbon-rich a-SiC:H films. J. Appl. Phys. 103, 123710 (2008).
https://doi.org/10.1063/1.2946446
 
13.    C.T. Kirk, Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica. Phys. Rev. B, 38, p. 1255 (1988).
https://doi.org/10.1103/PhysRevB.38.1255
 
14.    R. Reitano, G. Foti, Oscillator strength and effective charge in amorphous silicon carbon alloy. Solid State Communs. 115, p. 375-378 (2000).
https://doi.org/10.1016/S0038-1098(00)00192-7
 
15.    J. Leszczynski, Handbook of Computational Chemistry. Springer, p. 1430, 2012.
https://doi.org/10.1007/978-94-007-0711-5
 
16.    Sh.Y. Lin, S.T. Chang, Variation of vibrational local modes and electronic states of hydrogenated amorphous silicon carbide under thermal annealing. J. Phys. Chem. Solids, 59(9), p. 1399-1405 (1998).
https://doi.org/10.1016/S0022-3697(98)00236-4
 
17.    B.K. Ghosh, B.K. Agrawal, Vibrational structure of hydrogenated amorphous silicon carbide alloys. phys. status solidi (b), 147, p. 97 (1988).
 
18.    B.K. Agrawal, P.S. Yadav, B.K. Ghosh, Vibrational excitations in a-Si1−xCx:H alloys. J. Non-Cryst. Solids, 114, p. 519-521 (1989).
https://doi.org/10.1016/0022-3093(89)90636-4
 
19.    D.V. Tsu, G. Lucovsky, and B.N. Davidson, Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOx:H (0<x<2) alloy system. Phys. Rev. B, 40, p. 1795-1805 (1989).
https://doi.org/10.1103/PhysRevB.40.1795
 
20.    D.M. Wolfe, B.J. Hinds, F. Wang, G. Lucovsky, B.L. Ward, M. Xu, R.J. Nemanich, and D.M. Maher, Thermochemical stability of silicon-oxygen-carbon alloy thin films: A model system for chemical and structural relaxation at SiC-SiO2 interfaces. J. Vac. Sci. Technol. A, 17(4), p. 2170-2177 (1999).
https://doi.org/10.1116/1.581745
 
21.    G. Das, G. Mariotto, A. Quaranta, Microstructural evolution of thermally treated low-dielectric constant SiOC:H films prepared by PECVD. J. Electrochem. Soc. 153(3), p. F46-F51 (2006).
https://doi.org/10.1149/1.2165781
 
22.    J.V. Ryana, C.G. Pantano, Synthesis and characterization of inorganic silicon oxycarbide glass thin films by reactive rf-magnetron sputtering. J. Vac. Sci. Technol. A, 25(1), p. 153-159 (2007).
https://doi.org/10.1116/1.2404688
 
23.    H. Weider, M. Cardona and C.R. Guarnierl, Vibrational spectrum of hydrogenated amorphous Si-C films. phys. status solidi (b), 92, p. 99 (1979).
 
24.    Y. Catherine, G. Turban, Infrared absorption of hydrogenated amorphous Si:C and Ge:C films. This Solid Films, 70, p. 101-104 (1980).
https://doi.org/10.1016/0040-6090(80)90416-2
 
25.    J. Bullot and M.P. Schmidt, Physics of amorphous silicon−carbon alloys. phys. status solidi (b), 143, p. 345 (1987).
 
26.    S. Ray, D. Das, A.K. Barua Infrared vibrational spectra of hydrogenated amorphous silicon carbide thin films prepared by glow discharge. Solar Energy Materials, 15, p. 45-57 (1987).
https://doi.org/10.1016/0165-1633(87)90075-X
 
27.    F. Demichelis, F. Giorgis, C.F. Pirri, E. Tresso Bonding structure and defects in wide band gap a-Si1−xCx:H films deposited in H2 diluted SiH4+CH4 gas mixtures. Phil. Mag. B, 71(5), p. 1015-1033 (1995).
https://doi.org/10.1080/01418639508243603
 
28.    S.W. King, M. French, J. Bielefeld, W.A. Lanford, Mass and bond density measurements for PECVD a-SiCx:H thin films using Fourier transform-infrared spectroscopy. J. Non-Cryst. Solids, 357, p. 2970-2983 (2011).
https://doi.org/10.1016/j.jnoncrysol.2011.04.001
 
29.    J.H. Chen, W.J. Sah, Si.Ch. Lee, Identification of infrared absorption peaks of amorphous silicon carbon hydrogen alloy prepared using ethylene. J. Appl. Phys. 70(1), p. 125-130 (1991).
https://doi.org/10.1063/1.350324
 
30.    S. Sahli, Y. Segui, S. Ramdani, and Z. Takkouk, R.f. plasma deposition from hexamethyldisiloxane-oxygen mixture. Thin Solid Films, 250, p. 206 (1994).
https://doi.org/10.1016/0040-6090(94)90187-2
 
31.    Y.S. Mor, T.C. Chang, P.T. Liu et al., Effective repair to ultra-low-k dielectric material (k~2.0) by hexamethyldisilazane treatment. J. Vac. Sci. Technol. B, 20(4), p. 1334-1338 (2002).
https://doi.org/10.1116/1.1488645
 
32.    A. Singh, E.A. Davis, The a-SiOx:Hy thin film system. I. Structural study by IR spectroscopy. J. Non-Cryst. Solids, 122, p. 223-232 (1990).
https://doi.org/10.1016/0022-3093(90)90987-W
 
33.    B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications. Wiley, 2004.
https://doi.org/10.1002/0470011149
 
34.    T.R. Crompton, The Chemistry of Organic Silicon Compounds. Wiley, New York, 1989, p. 416-421.
 
35.    M.L. Hair, Hydroxyl groups on silica surface. J. Non-Cryst. Solids, 19, p. 299-309 (1975).
https://doi.org/10.1016/0022-3093(75)90095-2
 
36.    A. Goullet, C. Valle, A. Granier, and G. Turban, Optical spectroscopic analyses of OH incorporation into SiO2 films deposited from O2/tetraethoxysilane plasmas. J. Vac. Sci. Technol. A, 18(5), p. 2452 (2000).
https://doi.org/10.1116/1.1287152
 
37.    D.D. Burkey, K.K. Gleason, Structure and mechanical properties of thin films deposited from 1,3,5-trimethyl-1,3,5-trivinilciclotrisiloxane and water. J. Appl. Phys. 93, p. 5143 (2003).
https://doi.org/10.1063/1.1562744
 
38.    K. Maex, M.R. Baklanov, D. Shamiryan, F. Iakopi, S.H. Brongersma, and Z.S. Yanovitskaya, Low dielectric constant materials for microelectronics. J. Appl. Phys. 93, p. 8793 (2003).
https://doi.org/10.1063/1.1567460
 
39.    E. Gat, B. Cros, R. Berjoan, and J. Durand, Low-frequency glow-discharge hydrogebnated amorphous silicon carbide films. Materials and Manufacturing Processes, 7(3), p. 345-361 (1992).
https://doi.org/10.1080/10426919208947425
 
40.    R.S. Sussmann, R. Ogden, Photoluminescence and optical properties of plasma-deposited amorphous SixC1−x alloys. Phil. Mag. B, 44(1), p. 137-158 (1981).
https://doi.org/10.1080/01418638108222373
 
41.    B.J. Baliga, Silicon Carbide Power Devices. World Scientific Publishing Co. Pte. Ltd., Singapore, 2005.
 
42.    A.V. Vasin, Sh. Muto, Yu. Ishikawa, A.V. Rusavsky, T. Kimura, V.S. Lysenko, A.N. Nazarov, Comparative study of annealing and oxidation effects in SiC:H and a-SiC thin films deposited by radio-frequency magnetron sputtering techniques. Thin Solid Films, 519(7), p. 2218-222 (2011).
https://doi.org/10.1016/j.tsf.2010.11.005
 
43.    T. Friessnegg, M. Boudreau, P. Mascher, A. Knights, P.J. Simpson, W. Puff, Defect structure of carbon rich a-SiC: H films and the influence of gas and heat treatments. J. Appl. Phys. 84(2), p. 786 (1998).
https://doi.org/10.1063/1.368138
 
44.    L. Skuja, Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Cryst. Solids, 239, p. 16-48 (1998).
https://doi.org/10.1016/S0022-3093(98)00720-0
 
45.    Sh.N. Baker and G.A. Baker, Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 49, p. 6726 (2010).
https://doi.org/10.1002/anie.200906623
 
46.    Haitao Li, Zhenhui Kang, Yang Liu and Shuit-Tong Lee, Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 22, p. 24230 (2012).
https://doi.org/10.1039/c2jm34690g
 
47.    Liping Lin, Mingcong Rong, Feng Luo, Dongmei Chen, Yiru Wang, Xi Chen, Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. Trends in Analyt. Chem. 54, p. 83-102 (2014).
https://doi.org/10.1016/j.trac.2013.11.001
 
48.    Jing-Liang Li, Bin Tang, Bing Yuan, Lu Sun, Xun-Gai Wang, A review of optical imaging and therapy using nanosized grapheme and graphene oxide. Biomaterials, 34(37), p. 9519-9534 (Dec. 2013).
https://doi.org/10.1016/j.biomaterials.2013.08.066