Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 1. P. 074-078.
https://doi.org/10.15407/spqeo18.01.074


                                                                 

References

1. N. Gaponik, S.G. Hickey, D. Dorfs, A.L. Rogach, and A. Eychmuller, Progress in the light emission of colloidal semiconductor nanocrystals. Small, 6(13), p. 1364-1378 (2010).
https://doi.org/10.1002/smll.200902006
 
2.    J. Zhao, J.A. Bardecker, A.M. Munro, M.S. Liu, Y.H. Niu, I.K. Ding, J.D. Luo, B.Q. Chen, A.K.Y. Jen, D.S. Ginger, Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport. Nano Lett. 6, p. 463-467 (2006).
https://doi.org/10.1021/nl052417e
 
3.    A. Kubacka, B. Bachiller-Baeza, G. Colyn, M. Fernandez-Garcha, W, N-co-doped TiO2−anatase: a sunlight-operated catalyst for efficient and selective aromatic hydrocarbons photo-oxidation. J. Phys. Chem. C, 113, p. 8553-8555 (2009).
https://doi.org/10.1021/jp902618g
 
4.    M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science, 281, p. 2013-2016 (1998).
https://doi.org/10.1126/science.281.5385.2013
 
5.    L. Li, W. Wang, H. Liu, X. Liu, Q. Song, S. Ren, First principles calculations of electronic band structure and optical properties of Cr-doped ZnO. J. Phys. Chem. C, 113, p. 8460-8464 (2009).
https://doi.org/10.1021/jp811507r
 
6.    Y.J. Chan, S. Steckel, P.T. Snee, J.M. Caruge, J.M. Hodgkiss, D.G. Nocera, M.G. Bawendi, Blue semiconductor nanocrystal laser. Appl. Phys. Lett. 86, 073102 (2005).
https://doi.org/10.1063/1.1863445
 
7.    I. Fishtyk, Thermodynamics of Complex Chemical Equilibria. Shtynista, Chisinau, 1989.
 
8.    J. Butler, Ionic Equilibrium: A Mathematical Approach. Reading, MA: Addison-Wesley, 1964.
 
9.    V.S. Kulbanovsky, Complexes of manganese chloride (II) in the system: MnCl2−NH4Cl−H2O. Zhurnal neorganich. khimii, 22(3), p. 735-738 (1977), in Russian.
 
10.    K.B. Yacemirsky, V.P. Vasiliev, Instability Constants of Complex Compounds. Publ. Academy of Science of USSR, Moscow, 1959 (in Russian).
 
11.    B.P. Nikolsky, Handbook of Chemist. Chemistry, Moscow, 1965 (in Russian).
 
12.    P.K. Khanna, R.R. Gokhale, V.S. Subbarao, N. Singh, K.-W. Jun, B.K. Das, Synthesis and optical properties of CdS/PVA nanocomposites. Mat. Chem. Phys. 94, p. 454-459 (2005).
https://doi.org/10.1016/j.matchemphys.2005.05.006
 
13.    M. Tanaka, Y. Masumoto, Energy transfer mechanism in Mn2+ doped CdS nanocrystals. Solid State Communs. 120, p. 7-10 (2001).
https://doi.org/10.1016/S0038-1098(01)00325-8
 
14.    M. Tanaka, J. Qi, Y. Musumoto, Optical properties of undoped and Mn2+-doped CdS nanocrystals in polymer. J. Cryst. Growth. 214, p. 410-414 (2000).
https://doi.org/10.1016/s0022-0248(00)00119-6
 
15.    J.C. Ferrer, A. Salinas-Castillo, J.L. Alonso, S. Fernandez, R. Mallavi, Influence of SPP co-stabilizer on the optical properties of CdS quantum dots grown in PVA. Physics Procedia, 2, p. 335-338 (2009).
https://doi.org/10.1016/j.phpro.2009.07.016
 
16.    D. Kim, M. Miyamoto, M. Nakayama, Surface-modification effects on luminescence properties of CdS and CdMnS quantum dots prepared by a reverse-micelle method. phys. status solidi (c), 4, p. 1233-1236 (2003).
 
17.    A. Ishizumi, Y. Kanemitsu, Luminescence spectra and dynamics of Mn-doped CdS core/shell nanocrystals. Adv. Mater. 18, p. 1083-1085 (2006).
https://doi.org/10.1002/adma.200600018
 
18.    V.I. Fediv, G.Yu. Rudko, A.I. Savchuk, E.G. Gule, A.G. Voloshchuk, Synthesis route and optical characterization of CdS:Mn/polyvinyl alcohol nanocomposite. Semiconductor Physics, Quantum Electronics & Optoelectronics, 15(2) p. 117-123 (2012).
https://doi.org/10.15407/spqeo15.02.117