Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 1. P. 079-085.
https://doi.org/10.15407/spqeo18.01.079


                                                                 

References

1.    M.J. Manfra, N.G. Weimann, J.W.P. Hsu etal., High mobility AIGaN/GaN heterostructures grown by plasma-assisted molecular beam epitaxy on semi-insulating GaN templates prepared by hydride vapor phase epitaxy. J. Appl. Phys. 92, p.338-345 (2002).
https://doi.org/10.1063/1.1484227
 
2.    D.C. Look and J.R. Sizelove, Predicted maximum mobility in bulk GaN. Appl. Phys. Lett. 79(8), p.1133-1135 (2001).
https://doi.org/10.1063/1.1394954
 
3.    L. Bouguen, S. Contreras, A. B. Jouault, L.Konczewicz, J. Camassel, Y. Cordier, M. Azize, S. Chenot and N. Baron, Investigation of AlGaN/AlN/GaN heterostructures for magnetic sensor application from liquid helium temperature to 300°C. Appl. Phys. Lett. 92, 043504 (2008).
https://doi.org/10.1063/1.2838301
 
4.    V.N. Sokolov, K.W. Kim, V.A. Kochelap and D.L.Woolard, High-frequency small-signal conductivity of hot electrons in nitride semiconductors. Appl. Phys. Lett. 84(18), p.3630-3632 (2004);
https://doi.org/10.1063/1.1738518
 
Terahertz generation in submicron GaN diodes within the limited space-charge accumulation regime. J. Appl. Phys. 98(6), 064507 (2005).
https://doi.org/10.1063/1.2060956
 
5.    B.A. Danilchenko, S.E. Zelensky, E. Drok, S.A.Vitusevich, S.V. Danylyuk, N. Klein, H. Luth, A.E. Belyaev and V.A. Kochelap, Hot-electron transport in AlGaN/GaN two-dimensional conducting channels// Appl. Phys. Lett. 85 (22), p.5421-5423 (2004)
https://doi.org/10.1063/1.1830078
 
6.    S.A. Vitusevich, S.V. Danylyuk, N. Klein, M.V.Petrychuk, V. N. Sokolov, V.A. Kochelap, A.E. Belyaev, V. Tilak, J. Smart, A. Vertiatchikh, Excess low-frequency noise in AlGaN/GaN-based high-electron-mobility transistors. Appl. Phys. Lett. 80(12) p.2126-2128 (2002).
https://doi.org/10.1063/1.1463202
 
7.    O. Yilmazoglu, K. Mutamba, D. Pavlidis and T.Karaduman, Measured negative differential resistivity for GaN Gunn diodes on GaN substrate. Electronics Lett. 43(8), p.480-482 (2007).
https://doi.org/10.1049/el:20070658
 
8.    E.A. Barry, K.W. Kim, and V.A. Kochelap, Hot electrons in group-III nitrides at moderate electric fields. Appl. Phys. Lett. 80, p.2317-2319 (2002).
https://doi.org/10.1063/1.1464666
 
9.    E. Starikov, P. Shiktorov, V. Gruzinskis, L. Varani, C. Palermo, J-F Millithaler and L. Regiani, Frequency limits of terahertz radiation generated by optical-phonon transit-time resonance in quantum wells and heterolayers. Phys. Rev. B, 76, 045333 (2007).
https://doi.org/10.1103/PhysRevB.76.045333
 
10.    J.T. Lu and J.C. Cao, Monte Carlo study of terahertz generation from streaming distribution of two-dimensional electrons in a GaN quantum well. Semicond. Sci. Technol., 20, p.829-833 (2005).
https://doi.org/10.1088/0268-1242/20/8/034
 
11.    V.V. Korotyeyev, V.A. Kochelap, K.W. Kim, and D.L.Woolard, Streaming distribution of two-dimensional electrons in III-N heterostructures for electrically pumped terahertz generation. Appl. Phys. Lett, 82, p.2643-2645 (2003).
https://doi.org/10.1063/1.1569039
 
12.    K.W. Kim, V.V. Korotyeyev, V.A. Kochelap, A.A.Klimov, and D.L. Woolard, Tunable terahertz-frequency resonances and negative dynamic conductivity of two-dimensional electrons in group-III nitrides. J. Appl. Phys. 96, p.6488-6491 (2004).
https://doi.org/10.1063/1.1811388
 
13.    G.I. Syngayivska and V.V. Korotyeyev, Monte Carlo simulation of hot electron effects in compensated GaN semiconductor at moderate electric fields. Semiconductor Physics, Quantum Electronics Optoelectronics, 10(4), p.54-59 (2007).
 
14.    G.I.Syngayivska, V.V. Korotyeyev, Electrical and high-frequency properties of compensated GaN under electron streaming conditions. Ukr. J. Phys. 58(1), p.40-55 (2013).
https://doi.org/10.15407/ujpe58.01.0040
 
15.    G.I. Syngayivska, V.V. Korotyeyev and V.A.Kochelap, High-frequency response of GaN in moderate electric and magnetic fields: Interplay between cyclotron and optical phonon transient time resonances. Semicond. Sci. Technol. 28, 035007 (2013).
https://doi.org/10.1088/0268-1242/28/3/035007
 
16.    V.V. Korotyeyev, Peculiarities of THz-electromagnetic wave transmission through the GaN films under conditions of cyclotron and optical phonon transit-time resonances. Semiconductor Physics, Quantum Electronics & Optoelectronics, 16(1), p.18-26 (2013).
https://doi.org/10.15407/spqeo16.01.018
 
17.    E. Vosilyus and E. Levinson, Optical phonon production and galvanomagnetic effects for a large-anisotropy electron distribution. Zhurnal Eksperiment. Teor. Fiziki, 50, p.1660-1666 (1966), in Russian.
 
18.    I.B. Levinson, Transport phenomena in systems with pronounced dynamics in crossed fields, in: Hot Electrons in Semiconductors: Streaming and Anisotropic Distributions in Crossed Fields, Eds. A.A. Andronov and Yu.K. Pozela. Gorki, 1983, p.82-100 (in Russian).
 
19.    V.A. Valov, V.A. Kozlov, L.S. Mazov and I.M.Nefedov, Anisotropic and inverted hot carrier distributions in n-InSb, n-GaAs and p-Ge in crossed E- and H-fields, in: Inverted Distributions of Hot Electrons in Semiconductors, Eds. A.A.Andronov and Yu.K. Pozela. Gorki, 1983, p.17-55 (in Russian).
 
20.    R.S. Brazis, E.V. Starikov and P.N. Shiktorov, Two groups of electrons in crossed fields for low-temperature optical scattering, in: Hot Electrons in Semiconductors: Streaming and AnisotropicDistributions in Crossed Fields, Eds. A.A.Andronov and Yu.K. Pozela. Gorki, 1983, p.114-150 (in Russian).
 
21.    O. Brandt, H. Yang, J.R. Mullhauser, A. Trampert and K.H. Ploog, Properties of cubic GaN grown by MBE. Mater. Sci. Eng. B, 43, p.215-221 (1997).
https://doi.org/10.1016/S0921-5107(96)01871-5
 
22.    A.D. Boardmann, W. Fawcett and S. Swain, Monte Carlo determination of electron transport in gallium arsenide. J. Phys. Chem. Solids, 31, p.1963-1990 (1970).
https://doi.org/10.1016/0022-3697(70)90001-6
 
23.    A.D. Boardmann, W. Fawcett and J.G. Ruch, Monte Carlo determination of hot electron galvanomagnetic effects in gallium arsenide. Phys. status solidi (a), 4, p.133-141 (1971).
https://doi.org/10.1002/pssa.2210040114
 
24.    C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55(3), p. 645-705 (1983).
https://doi.org/10.1103/RevModPhys.55.645
 
25.    M. Levinstein, S. Rumyantsev, and M. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe. Wiley, New York, 2001.
 
26.    Ya.I. Al'ber, A.A. Andronov, V.A. Valov, V.A.Kozlov, A.M. Lerner and I.P. Ryazantseva, Inverted hot-electron states and negative conductivity in semiconductors. Zhurnal Eksperiment. Teor. Fiziki, 72(3), p.1030-1050 (1977), in Russian [Sov. Phys. JETP, 45(3), p.539-550 (1977)].
 
27.    S. Kachyulis, I. Parshyalyunas, G. Tamulaitis, Electric conductivity in n-GaAs and n-InP in crossed electric and magnetic fields at T= 77K, in: Hot Electrons in Semiconductors: Streaming and Anisotropic Distributions in Crossed Fields, Eds. A.A. Andronov and Yu.K. Pozela. Gorki, 1983, p.101-113 (in Russian).
 
28.    E.M. Gershenzon, L.B. Litvak-Gorskaya, R.I.Rabinovich and E.Z. Shapiro, Cooling of non-equilibrium electrons and negative magnetoresistance in strong electric and magnetic fields. Zhurnal Eksperiment. Teor. Fiziki, 90, p.248-258 (1986), in Russian. [Sov. Phys. JETP, 63(1), p.142-148 (1986)].