Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 1. P. 086-089.
https://doi.org/10.15407/spqeo18.01.086


                                                                 

References

1. H. Liu, V. Avrutin, N. Izyumskaya, U. Ozgur, and H. Morkoc, Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlatt. Microstruct. 48(5), p. 458-484 (2010).
https://doi.org/10.1016/j.spmi.2010.08.011
 
2.    U. Ozgur, Y.I. Alivov, C. Liu et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, p. 1-103 (2005).
https://doi.org/10.1063/1.1992666
 
3.    A. Rumyantseva, S. Kostcheev, P.-M. Adam et al., Nonresonant surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles. ACS Nano, 7(4), p. 3420-3426 (2013).
https://doi.org/10.1021/nn400307a
 
4.    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 287(5455), p. 1019-1022 (2000).
https://doi.org/10.1126/science.287.5455.1019
 
5.    K. Sato and H. Katayama-Yoshida, Stabilization of ferromagnetic states by electron doping in Fe-, Co- or Ni-doped ZnO. Jpn. J. Appl. Phys. 40(4A), p. L334 (2001).
https://doi.org/10.1143/JJAP.40.L334
 
6.    I. Djerdj, Z. Jaglicic, D. Arcon, and M. Niederberger, Co-doped ZnO nanoparticles: Minireview. Nanoscale, 2(7), p. 1057-1104 (2010).
https://doi.org/10.1039/c0nr00148a
 
7.    L. Li, Y. Guo, X. Y. Cui et al., Magnetism of Co-doped ZnO epitaxially grown on a ZnO substrate. Phys. Rev. B, 85(17), 174430 (2012).
https://doi.org/10.1103/PhysRevB.85.174430
 
8.    P. Gopal and N. Spaldin, Magnetic interactions in transition-metal-doped ZnO: An ab initio study. Phys. Rev. B, 74(9), 094418 (2006).
https://doi.org/10.1103/PhysRevB.74.094418
 
9.    V.V. Strelchuk, V.P. Bryksa, K.A. Avramenko, P.M. Lytvyn, M.Y. Valakh, and V.O. Pashchenko, Ferromagnetism in Co-doped ZnO films grown by molecular beam epitaxy: magnetic, electrical and microstructural studies. Semiconductor Physics, Quantum Electronics and Optoelectronics, 14(1), p. 31-40 (2011).
https://doi.org/10.15407/spqeo14.01.031
 
10.    Q. Cao, S. He, Y. Deng, D. Zhu, X. Cui, G. Liu, H. Zhang, S. Yan, Y. Chen, and L. Mei, Raman scattering investigations on Co-doped ZnO epitaxial films: Local vibration modes and defect associated ferromagnetism. Curr. Appl. Phys. 14(5), p. 744-748 (2014).
https://doi.org/10.1016/j.cap.2014.03.011
 
11.    C. Sudakar, P. Kharel, G. Lawes, R. Suryanarayanan, R. Naik, and V. M. Naik, Raman spectroscopic studies of oxygen defects in Co-doped ZnO films exhibiting room-temperature ferromagnetism. J. Phys.: Condens. Matter, 19(2), 26212 (2007).
https://doi.org/10.1088/0953-8984/19/2/026212
 
12.    J. Kaur, R.K. Kotnala, V. Gupta, and K. Chand Verma, Anionic polymerization in Co and Fe doped ZnO: Nanorods, magnetism and photoactivity. Curr. Appl. Phys. 14(5), p. 749-756 (2014).
https://doi.org/10.1016/j.cap.2014.03.002
 
13.    V. Fonoberov, K. Alim, A. Balandin, F. Xiu, and J. Liu, Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals. Phys. Rev. B, 73(16), p. 1-9 (2006).
https://doi.org/10.1103/PhysRevB.73.165317
 
14.    J.S. Thakur, G.W. Auner, V.M. Naik, C. Sudakar, P. Kharel, G. Lawes, R. Suryanarayanan, and R. Naik, Raman scattering studies of magnetic Co-doped ZnO thin films. J. Appl. Phys. 102(9), 093904 (2007).
https://doi.org/10.1063/1.2804286
 
15. H. Zhou, L. Chen, V. Malik et al., Raman studies of ZnO:Co thin films. phys. status solidi, 204(1), p. 112-117 (2007).
 
16.    V.G. Hadjiev, M.N. Illiev, and I.V. Vergilov, The Raman spectra of Co3O4. J. Phys. C: Solid State Phys. 199, p. 3-6 (1988).
https://doi.org/10.1088/0022-3719/21/7/007
 
17.    P. Giannozzi, S. Baroni, N. Bonini et al., Quantum Espresso: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter, 21(39), 395502 (2009).
https://doi.org/10.1088/0953-8984/21/39/395502
 
18.    J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), p. 3865-3868 (1996).
https://doi.org/10.1103/PhysRevLett.77.3865
 
19.    J. D. Pack and H. J. Monkhorst, Special points for Brillouin-zone integrations. Phys. Rev. B, 16(4), p. 1748-1749 (1977).
https://doi.org/10.1103/PhysRevB.16.1748
 
20.    M. Methfessel and A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B, 40(6), p. 3616-3621 (1989).
https://doi.org/10.1103/PhysRevB.40.3616
 
21.    S. Hu, S. Yan, M. Zhao, and L. Mei, First-principles LDA+U calculations of the Co-doped ZnO magnetic semiconductor. Phys. Rev. B, 73(24), 245205 (2006).
https://doi.org/10.1103/PhysRevB.73.245205
 
22.    C.F. Klingshirn, A. Waag, A. Hoffmann, and J. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications. Berlin, Springer, 2010, p. 359.
https://doi.org/10.1007/978-3-642-10577-7