Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 1. P. 097-100.
https://doi.org/10.15407/spqeo18.01.097


                                                                 

References

1.    K. Bruner, Si/Ge nanostructures. Repts. Progr. Phys. 65, p. 27-72 (2002).
https://doi.org/10.1088/0034-4885/65/1/202
 
2.    A.V. Dvurechenskii, A.I. Yakimov, N.P. Stepina, V.V. Kirienko, P.L. Novikov, SiGe nanodots in electro-optical SOI devices, in: Nanoscaled Semiconductor-on-Insulator Structures and Devices. Springer, 2007p. 113-128.
https://doi.org/10.1007/978-1-4020-6380-0_8
 
3.    G. Abstreiter, P. Schittenhelm, C. Engel, E. Silveira, A. Zrenner, D. Meertens, W. Jager. Growth and characterization of self-assembled Ge-rich islands on Si. Semicond. Sci Technol. 11, p. 1525 (1996).
https://doi.org/10.1088/0268-1242/11/11S/012
 
4.    A. Usami, N. Ujihara, T. Fujiwara, K. Sazaki, G. Nakajima, K. Shiraki, Enhanced quantum efficiency of solar cells with self-assembled Ge dots stacked in multilayer structure. Appl. Phys. Lett. 83, p. 1258 (2003).
https://doi.org/10.1063/1.1600838
 
5.    N.T. Bagraev, A.D. Bouravleuv, L.E. Klyachkin, A.M. Malyarenko, S.A. Rykov, Self-ordered microcavities embedded in ultrashallow silicon p–n junctions. Semiconductors, 34, p. 700-711 (2000).
https://doi.org/10.1134/1.1188058
 
6.    J.M. Baribeau, X. Wu, N.L. Rowell, D.J. Lockwood, Ge dots and nanostructures grown epitaxially on Si. Condensed Matter, 18, p. 139-174 (2006).
https://doi.org/10.1088/0953-8984/18/8/R01
 
7.    O.P. Pchelyakov, Yu.B. Bolkhovityanov, A.V. Dvurechenski, L.V. Sokolov, A.I. Nikiforov, A.I. Yakimov, B. Voigtlander, Silicon-germanium nanostructures with quantum dots: Formation mechanisms and electrical properties. Semiconductors, 34, p. 1229-1247 (2000).
https://doi.org/10.1134/1.1325416
 
8.    M.K. Sheinkman and A.Ya. Shik, Long-term relaxation and residual conductivity in semiconductors. Fizika Tekhnika Poluprovodn. 10, p. 209-232 (1976), in Russian.
 
9.    H.J. Queisser, D.E. Theodorou, Decay kinetics of persistent photoconductivity in semiconductors. Phys. Rev. B, 33, p. 4027-4033 (1986).
https://doi.org/10.1103/PhysRevB.33.4027
 
10.    H.J. Queisser, Nonexponential relaxation of conductance near semiconductor interfaces. Phys. Rev. Lett. 54, p. 234-236 (1985).
https://doi.org/10.1103/PhysRevLett.54.234
 
11.    T.N. Sitenko, I.P. Tyagulskii, V.I. Lyashenko, V.S. Lysenko, Role of surface band bending in residual conductivity formation in epitaxial GaAs films. phys. status solidi (a), 30, p. 755-763 (1975).
 
12.    V. Kuryliuk, O. Korotchenkov, A. Cantarero, Carrier confinement in Ge/Si quantum dots grown with an intermediate ultrathin oxide layer. Phys. Rev. B, 85, 075406-075416 (2012).
https://doi.org/10.1103/PhysRevB.85.075406
 
13.    A.V. Dvurechenskii, A.I. Yakimov, Type-II Ge/Si quantum dots. Semiconductor Physics and Technology, 35, p. 1143-1153 (2001), in Russian.
https://doi.org/10.1134/1.1403575
 
14.    O.A. Shegai, K.S. Zhuravlev, V.A. Markov, A.I. Nikiforov, O.P. Pchelyakov, Photoresistance of Si/Ge/Si structures with germanium quantum dots. Semiconductor Physics and Technology, 34, p. 1363-1367 (2000), in Russian.
https://doi.org/10.1134/1.1325429
 
15.    A. A. Mykytiuk, S. V. Kondratenko, V. S. Lysenko, Yu. N. Kozyrev, Photocurrent spectroscopy of Ge nanoclusters grown on oxidized silicon surface. Proc. SPIE 9126, Nanophotonics V, p. 3J (2014).