Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. V. 19, N 1. P. 001-008.
References 1. H. Markoc, Handbook of Nitride Semiconductors and Devices. Wiley-VCH Verlag GmbH & Co KGaA, 2008. 2. A.E. Belyaev, O. Makarovsky, D.J. Walker et al., Resonance and current instabilities in AlN/GaN resonant tunnelling diodes. Physica E: Low-dimen. Syst. and Nanostruct. 21(2), p. 752-755 (2004). 3. A. Evtukh, O. Yilmazoglu, V. Litovchenko, M. Semenenko, T. Gorbanyuk, A. Grygoriev, H. Hart-nagel, D. Pavlidis, Electron field emission from nanostructured surfaces of GaN and AlGaN. phys. status solidi (c), 5, p. 425 (2008). 4. B. Gelmont, K. Kim, M. Shur, Monte Carlo simulation of electron transport in gallium nitride. J. Appl. Phys. 74, p. 1818 (1993). https://doi.org/10.1063/1.354787 5. S.C. Jain, M. Willander, J. Narayan, R. van Overstraeten, III-nitrides: Growth, characterization, and properties. J. Appl. Phys. 87, p. 965 (2000). https://doi.org/10.1063/1.371971 6. H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Metalorganic vaper phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48, p. 353 (1986). https://doi.org/10.1063/1.96549 7. S. Nakamura, GaN growth using GaN buffer layer. Jpn. J. Appl. Phys. 30, p. L1705 (1991). https://doi.org/10.1143/JJAP.30.L1705 8. H. Amano, K. Hiramatsu and I. Akasaki, Effect of low-temperature-deposited layer on the growth of group 111 nitrides on sapphire. Jpn. J. Appl. Phys. 27, p. L1384 (1988). https://doi.org/10.1143/JJAP.27.L1384 9. T. Detchprohm, K. Hiramatsu, K. Itoh and I. Aka-saki, Relaxation process of the thermal strain in the GaN/ά-Al2O3 heterostructure. Jpn. J. Appl. Phys. 31, p. L1454 (1992). https://doi.org/10.1143/JJAP.31.L1454 10. A.F. Wright and U. Grossner, The effect of doping and growth stoichiometry on the core structure of a threading edge dislocation GaN. Appl. Phys. Lett. 73, p. 2751 (1998). https://doi.org/10.1063/1.122579 11. K. Ieung, A.F. Wright and E.B. Stechel, Charge accumulation at a threading edge dislocation in gallium nitride. Appl. Phys. Lett.74, p. 2495 (1999). https://doi.org/10.1063/1.123018 12. S.M. Lee, M.A. Belkhir, X.Y. Zhu, Electronic structures of GaN edge dislocation. Phys. Rev. B, 61, p. 16033 (2000). https://doi.org/10.1103/PhysRevB.61.16033 13. J.E. Northrup, Screw dislocation in GaN. Appl. Phys. Lett. 78, p. 2288 (2001). https://doi.org/10.1063/1.1361274 14. J.E. Northrup, Field-dependent carrier decay dynamics in strained InGaN/GaN guantum wells. Phys. Rev. B, 66 (2002). 15. J. Elsner, R. Jons, Theory of threading edge and screw dislocation in GaN. Phys. Rev. Lett. 79, p. 3672 (1997). https://doi.org/10.1103/PhysRevLett.79.3672 16. J. Elsner, R. Jones, M.I. Heggie, Deep acceptors trapped at threading-edge dislocations in GaN. Phys. Rev. B, 58, p. 12571 (1998). https://doi.org/10.1103/PhysRevB.58.12571 17. D. Jena, A.C. Gossard, U.K. Mishra, Dislocation scattering in a two-dimensional electron gas. Appl. Phys. Lett. 76, p. 1707 (2000). https://doi.org/10.1063/1.126143 18. P.J. Hansen, Y.E. Strausser, Scanning capacitance microscopy imaging of threading dislocation in GaN. Appl. Phys. Lett. 72, p. 2247 (1998). https://doi.org/10.1063/1.121268 19. D. Cherns, C.G. Jiao, Electron tomography and holography in materials sciens. Phys. Rev. Lett. 87, p. 20 (2001). 20. J.P. Hsu, H.M. Ng, A.M. Sergent, Scanning Kelvin force microscopy imaging of surface potrntial variations near threading dislocations in GaN. Appl. Phys. Lett. 81, p. 3579 (2002). https://doi.org/10.1063/1.1519732 21. S.J. Rosner, E.C. Carr, Correlation of cathode-luminescens inhomogenety with microstructural defects in epitaxial GaN. Appl. Phys. Lett. 70, p. 420 (1997). https://doi.org/10.1063/1.118322 22. T. Sugahara, H. Sato, M.S. Hao, Direct evidence that dislocation are non-radiative recombination centers in GaN. Jpn. J. Appl. Phys. 37, p. L398 (1998). https://doi.org/10.1143/JJAP.37.L398 23. D. Cherns, S.J. Henley, Edge and screw dislocation as nonradiative centers in InGaN/GaNquantum well luminescence. Appl. Phys. Lett. 78, p. 2691 (2001). https://doi.org/10.1063/1.1369610 24. N. Yamamoto, H. Itoh, V. Grillo, Cathodo-luminescence characterization of dislocations in GaN using a transmission electron microscope. J. Appl. Phys. 94, p. 4315 (2003). https://doi.org/10.1063/1.1598632 25. T. Hino, S. Tomiya, T. Miyajima, Characterization of threading dislocation in GaN epitaxial layers. Appl. Phys. Lett. 76, p. 3421 (2000). https://doi.org/10.1063/1.126666 26. L. Chernyak, A. Osinsky, Nootz, A. Schultz, J. Ja-sinski, Electron beam and optical depth profiling of quasibulk GaN. Appl. Phys. Lett. 77, p. 2695 (2000). https://doi.org/10.1063/1.1319530 27. I. Arslan and N.D. Browning, Role of oxygen at screw dislocation in GaN. Phys. Rev. Lett. 91, p. 165501 (2003). https://doi.org/10.1103/PhysRevLett.91.165501 28. P. Kozodoy, J.P. Ibbetson, H. Marchand, Electrical characterization of GaN p-n junctions with and without threading dislocation. Appl. Phys. Lett. 73, p. 975 (1998). https://doi.org/10.1063/1.122057 29. G. Parish, S. Keller, P. Kozodoy, J.P. Ibbetson, High-performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxial GaN. Appl. Phys. Lett. 75, p. 247 (1999). https://doi.org/10.1063/1.124337 30. L. McCarthy, I. Smorchkova, H. Xing, Effect of threading dislocation on AlGaN/GaN hetero-junction bipolar transistors. Appl. Phys. Lett. 78, p. 2235 (2001). https://doi.org/10.1063/1.1358358 31. S. Yoshida, S. Misawa and S. Gonda, Improve-ments on the electrical and luminescence properties of reactive MBE grown GaN films by using AlN coated sapphire substrate. Appl. Phys. Lett. 42, p. 427 (1983). https://doi.org/10.1063/1.93952 32. T. Kachi, T. Tomita, K. Itoh, Structural charac-terization and elastic strain of InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 72, p. 704 (1998). https://doi.org/10.1063/1.120851 33. H. Amano, N. Sawaki, I. Akasaki, MOVPE growth of a high quality GaN film using an AiN buffer layer. Appl. Phys. Lett. 48, p. 353 (1986). https://doi.org/10.1063/1.96549 34. A.E. Wiskenden, D.K. Wiskenden and T.J. Kis-tenmacher, The effect of thermal annealing on GaN nucleation layers. J. Appl. Phys. 75, p. 5367 (1994). https://doi.org/10.1063/1.355740 35. S.D. Hersee, J. Ramer, K. Zheng, The role of the low temperature buffer layer and layer thickness in the optimization of OMVPE. J. Electron. Mater. 24, p. 1519 (1995). https://doi.org/10.1007/BF02676804 36. D. Kapolnek, X.H. Wu, B. Heing, Structural evolution in epitaxial MOCVD growth GaN films on sapphire. Appl. Phys. Lett. 67, p. 1541 (1995). https://doi.org/10.1063/1.114486 37. I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, Effect of an buffer layer on crystallographic and on electrical and optical properties of GaN. J. Cryst. Growth, 98, p. 209 (1998). https://doi.org/10.1016/0022-0248(89)90200-5 38. J.N. Kuznia, M.A. Khan, D.T. Olson, Influence of buffer layers on the deposition of high quality GaN. J. Appl. Phys. 73, p. 4700 (1993). https://doi.org/10.1063/1.354069 39. T. Ito, M. Sumiya, Y. Takano, Influence of thermal annealing on GaN buffer layers and the property subsequent GaN layers. Jpn. J. Appl. Phys. 38, p. 649 (1999). https://doi.org/10.1143/JJAP.38.649 40. L. Sugiura, K. Itaya, J. Nishio, Effect of thermal treatment of low-temperature GaN buffer layers on the quality of subsequent GaN layers. J. Appl. Phys. 82, 4877 (1997). https://doi.org/10.1063/1.366350 41. X.H. Wu, P. Fini, S. Keller, Morphological and structural transitions in GaN films growth on sapphire by MOVPE. Jpn. J. Appl. Phys. 35, p. L1648 (1996). https://doi.org/10.1143/JJAP.35.L1648 42. P. Fini, X. Wu, E.J. Tarsa, The effect of growth environment on the morphological and extended defect evolution in GaN grown by MOCVD. Jpn. J. Appl. Phys. 37, p. 4460 (1998). https://doi.org/10.1143/JJAP.37.4460 43. K. Uchida, K. Nichida, M. Kondo, Characterization of double-buffer layers and its application for the MOVPE grown of GaN. Jpn. J. Appl. Phys. 37, p. 3882 (1998). https://doi.org/10.1143/JJAP.37.3882 44. P. Kung, A. Saxler, X. Zhang, D. Walker, High quality AlN and GaN epilayers grown on (0001) sapphire (100) and (111) silicon substrate. Appl. Phys. Lett. 66, p. 2958 (1995). https://doi.org/10.1063/1.114242 45. Y. Ohba and A. Hatano, Growth of high-quality AlN and AlN/GaN/AlN heterostructure on sapphire substrate. Jpn. J. Appl. Phys. 35, p. L1013 (1996). https://doi.org/10.1143/JJAP.35.L1013 46. Y. Ohba, H. Yoshida, Growth of high-quality AlN,GaN and AlGaN with atomically smooth surface on sapphire substrate. Jpn. J. Appl. Phys. 36, p. L1565 (1997). https://doi.org/10.1143/JJAP.36.L1565 47. T.W. Weeks, M.D. Bremser, K.S. Ailey, GaN thin films deposited via OMVPE on 6H-SiC using high temperature AlN buffer layers. Appl. Phys. Lett. 67, p. 401 (1995). https://doi.org/10.1063/1.114642 48. F.A. Ponce, B.S. Krusor, J.S. Major, Micro-structure of GaN epitaxy on SiC using AlN buffer layers. Appl. Phys. Lett. 67, p. 410 (1995). https://doi.org/10.1063/1.114645 49. Y. Ohba, S. Ilda, Mechanism for reduction disloca-tions at the initial stage of GaN growth on sapphire substrates using high-temperature growth AlN buf-fer layers. Jpn. J. Appl. Phys. 41, p. L615 (2002). https://doi.org/10.1143/JJAP.41.L615 50. A. Yamamoto, M. Tsujino, M. Ohkubo, Nitridation effects of substrate surface on the MOCVD growth of InN on Si and sapphire substrate. J. Cryst. Growth, 137, p. 415 (1994). https://doi.org/10.1016/0022-0248(94)90979-2 51. H. Kawakami, K. Sakurai, Epitaxial growth of AlN film with an initial-nitriding layer on Al2O3 substrate. Jpn. J. Appl. Phys. 27, p. L161 (1988). https://doi.org/10.1143/JJAP.27.L161 52. K. Uchida, A. Watanabe, F. Yano, M. Kouguchi, Nitridation process of sapphire substrate surface and its effect on the growth of GaN. J. Appl. Phys. 79, p. 3487 (1996). https://doi.org/10.1063/1.361398 53. K. Uchida, A. Watanabe, F. Yano, M. Kouguchi, Characterization of nitrided layers and their affection the growth and quality of GaN. Solid State Electronics, 41, p. 135 (1997). https://doi.org/10.1016/S0038-1101(96)00153-0 54. S. Fuke, H. Teshigawara, K. Kuwahara, Influences of initial nitridation and buffer layer deposition on the morphology of a (0001) GaN. J. Appl. Phys. 83, p. 764 (1998). https://doi.org/10.1063/1.366749 55. J.L. Rouviere, M. Arlery, R. Niebuhr, Transmission electron microscopy characterization of GaN layers growth by MOCVD on sapphire. Mater. Sci. Eng. B, 43, p. 161 (1997). https://doi.org/10.1016/S0921-5107(96)01855-7 56. Q.S. Paduano, D.W. Weyburn, J. Jasinski, Initial process affect on the surface morphology and structural property of the AlN epilayers. J. Cryst. Growth, 261, p. 259 (2004). https://doi.org/10.1016/j.jcrysgro.2003.11.017 57. J. Jasinski, Z. Liliental-Weber, Q.S. Paduano, Inversion domains in AlN growth on (0001) sapphire. Appl. Phys. Lett. 83, p. 2811 (2003). https://doi.org/10.1063/1.1616191 58. T. Hashimoto, M. Yuri, M. Ishida, Reduction of threading dislocation in GaN on sapphire by buffer layer annealing. Jpn. J. Appl. Phys. 38, p. 6605 (1999). https://doi.org/10.1143/JJAP.38.6605 59. S. Keller, B.P. Keler, Y.F. Wu, Influence of sapphire nitridation on properties of GaN grown MOCVD. Appl. Phys. Lett. 68, p. 1525 (1996). https://doi.org/10.1063/1.115687 60. S. Tanaka, S. Iwai and Y. Aoyagi, Self-assembling GaN quantum dots on AlGaN surface using a surfactant. Appl. Phys. Lett. 69, p. 40969 (1996). https://doi.org/10.1063/1.117830 61. E. Frayssinet, B. Beaumont, J.P. Faurie, Obser-vation of confinement-dependent exciton binding energy of GaN quantum dots. MRS Internet J. Nitride Semicond. Res. 7 (2002). 62. S. Haffouz, H. Lahreche, P. Vennegues, The effect of the Si/N treatment of a nitridated sapphire surface on the mode of GaN. Appl. Phys. Lett. 73, p. 1278 (1998). https://doi.org/10.1063/1.122148 63. S. Tanaka, M. Takeuchi and Y. Aoyagi, Anti-surfactant in III-nitride epitaxy quantum dot formation and dislocation termination. Jpn. J. Appl. Phys. 39, p. L831 (2000). https://doi.org/10.1143/JJAP.39.L831 64. H. Lahreche, P. Venneguesm, B. Beaumont, Improvement in a-plane GaN crystal quality by a two-step growth process. J. Cryst. Growth, 205, p. 245 (1999). 65. K. Pakula, R. Bozek, J. Jasinski, Reduction of dislocation density in heteroepitaxial GaN: role of SiH4 treatment. J. Cryst. Growth, 267, p. 1 (2004). https://doi.org/10.1016/j.jcrysgro.2004.03.020 66. D.S. Wuu, H. Wei, S.T. Shen, Defect reduction of laterally regrown GaN on GaN patterned sapphire substrate. J. Cryst. Growth, 311, p. 3063-3066 (2009). https://doi.org/10.1016/j.jcrysgro.2009.01.107 67. H. Gao, F. Yan, Y. Zhang, Improvement of the performance of GaN-based LEDs grown on sapphire substrate wet and ICP etching. Solid-State Electron. 52, p. 962-967 (2008). https://doi.org/10.1016/j.sse.2007.12.013 68. D.H. Kang, E.S. Jang, H. Song, Grown and evalution of GaN grown on patterned sapphire substrate. J. Korean Phys. Soc. 52, p. 1895-1899 (2008). https://doi.org/10.3938/jkps.52.1895 69. J.C. Song, S.H. Lee, I.H. Lee, Characteristics comparison between GaN epilayers grown on patterned and unpatterned sapphire substrate. J. Cryst. Growth, 308, p. 321-324 (2007). https://doi.org/10.1016/j.jcrysgro.2007.08.030 70. Y.P. Hsu, S.J. Chang, Y.K. Sheu, Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs. J. Cryst. Growth, 261, p. 466-470 (2004). https://doi.org/10.1016/j.jcrysgro.2003.09.046 71. J. Wang, L.W. Guo, H.Q. Jia, Fabrication of sapphire substrate by wet ghemical etching for maskless lateral overgrowth of GaN. J. Electron. Soc. 153(3), p. C182-C185 (2006). https://doi.org/10.1149/1.2163813 72. W.U. Meng, Z.Y. Ping, W.J. Xi, Investigation of a GaN nucleation layer on a patterned sapphire substrate. Chin. Phys. Lett. 28, p. 068502 (2011). https://doi.org/10.1088/0256-307X/28/6/068502 73. H.S. Cheong, C.H. Hong, Improvement of structural properties of GaN pendeo-epitaxial layers. J. Semicond. Techn. and Sci. 6, p. 199-205 (2006). 74. J.H. Lee, J.T. Oh, I.S. Choi, Growth and cha-racteristics of InGaN/GaN films grown on hemi-spherical patterned sapphire by using MOCVD. J. Korean Phys. Soc. 51, p. S249-S252 (2007). 75. H. Gao, F. Yan, Y. Zhang, Defect reduction of laterally regrown GaN on GaN patterned sapphire substrate. Solid State Electron. 55, p. 765-771 (2007). 76. H.Y. Shin, S.K. Kwon, Y.I. Chang, Reduction dislocation density in GaN films using a cone-shaped patterned sapphire substrate. J. Cryst. Growth, 311, p. 4167-4170 (2009). https://doi.org/10.1016/j.jcrysgro.2009.07.023 77. Yu-Ting Hsu, Cheng-Chang Yu, Wen-Hjw Len, Improved output power of nitride-based light-emitting diodes with convex-patterned sapphire substrate. IEEE Photon. Technol. Lett. 24, p. 1686-1688 (2012). https://doi.org/10.1109/LPT.2012.2212425 78. P. Dong, J. Yan, J. Wang, Y. Zhang, 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nanopatterned sapphire substrate. Appl. Phys. Lett. 102, p. 241113 (2013). https://doi.org/10.1063/1.4812237 |