2.
D.R. Shankaran, K.V. Gobi, N. Miura, Recent advancement in
surface plasmon resonance immunosensors for detection of small
molecules of biomedical, food and environmental interest. Sensors and
Actuators B, 121(1), p. 158-177 (2007). https://doi.org/10.1016/j.snb.2006.09.014
6.
N. Rojo, G. Ercilla, I. Haro, GB virus C (GBV-C)/ hepatitis G
virus (HGV): Towards the design of synthetic peptides-based biosensors
for immune-diagnosis of GBV-C/HGV infection. Current Protein and
Peptide Sci. 4(4), p. 291-298 (2003). https://doi.org/10.2174/1389203033487135
7.
H. Vaisocherova, K. Mrkvova, M. Piliarik, P. Ji-noch, M.
Steinbachova, J. Homola, Surface plas-mon resonance biosensor for
direct detection of antibody against Epstein–Barr virus. Biosensors and
Bioelectronics, 22(6), p. 1020-1026 (2007). https://doi.org/10.1016/j.bios.2006.04.021
9.
S.E. Godstall, J.T. Kirchner, Infectious mono-nucleosis.
Complexities of common syndrome. Postgrad Med. 107(7), p. 175-186
(2000).
10. R. Khanna, S.R. Burrows,
Immune regulation in Epstein–Barr virus-associated diseases. Microbiol.
Revs. N 9, p. 387-405 (1995).
11. A.M.
Yegorov, A.P. Osipov, B.B. Dzantiev, Theory and Practice of
Immune-enzyme Analysis. Vysshaia Shkola, Moscow, 1991 (in Russian).
12. G.G.B. Klaus (Ed.). Lymphocytes: A Practical Approach. Oxford; Washington, DC, IRL Press, 1997, p. 261.
13.
B. Byrne, E. Stack, N. Gilmartin, R. O'Kennedy, Antibody-based
sensors: Principles, problems and potential for detection of pathogen
and associated toxins. Sensors, 9, p. 4407-4445 (2009). https://doi.org/10.3390/s90604407
14.
N.V. Nesterova, L.M. Nosach, S.D. Zagorodnya, O.Y. Povnitsa, P.M.
Boltovets, G.V. Baranova, A.V. Golovan, Elaboration of optical
immune-sensors based on the surface plasmon resonance for detecting
specific antibodies and antigens of Epstein–Barr virus and human
adenovirus. Microbiology J. 70(6), p. 67-73 (2008).
15.
A.A. Kolomenskii, P.D. Gershon, H.A. Schuessler, Sensitivity and
detection limit of concentration and adsorption measurements by
laser-induced surface-plasmon resonance. Appl. Opt. 36, p. 6539-6547
(1997). https://doi.org/10.1364/AO.36.006539
16.
K. Lin, Y. Lu, Z. Luo, P. Wang, H. Ming, Nume-rical and
experimental investigation of temperature effects on the surface
plasmon resonance sensor. Chinese Opt. Lett. 7, No. 5, pp. 428-431
(2009). https://doi.org/10.3788/COL20090705.0428
17.
R.B.M. Schasfoort, A.J. Tudos, Handbook of Surface Plasmon
Resonance. Cambridge, U.K. Royal Society of Chemistry, 2008, p. 403. https://doi.org/10.1039/9781847558220
18.
N.V. Nesterova, S.D. Zagorodnya, G.V. Baranova, A.V. Golovan,
Yu.V. Ushenin, R.V. Khrystosenko, Immunosensor test-system based on the
surface plasmon resonance for detecting antibodies against Epstein–Barr
virus. Patent on useful model 51125, Ukraine, CI A61K 31/505. Publ.
12.07.2010. Bul. N13.
19. R.V.
Khrystosenko, Optimization of the surface plasmon resonance minimum
detection algorithm for improvement of method sensitivity.
Semiconductor Physics, Quantum Electronics and Optoelectronics, 18(3),
p. 279-285 (2015). https://doi.org/10.15407/spqeo18.03.279