Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. V. 19, N 1. P. 098-108.
DOI: https://doi.org/10.15407/spqeo19.01.098


References



1.    D.I. Bletskan, Crystalline and Glassy Chalcogenides of Si, Ge, Sn and Alloys on their Base. Zakarpattia, Uzhhorod, 2004.
 
2.    B. Palosz, S. Gierlotka, F. Levy, Polytypism of SnSe2 crystals grown by chemical transport: structures of six large-period polytypes of SnSe2. Acta Cryst. C, 41(10), p. 1404-1406 (1985).
https://doi.org/10.1107/S0108270185007958
 
3.    B. Palosz, E. Salje, Lattice parameters and sponta-neous strain in AX2 polytypes: CdI2, PbI2, SnS2 and SnSe2. J. Appl. Crystallogr. 22(6), p. 622-623 (1989).
https://doi.org/10.1107/S0021889889006916
 
4.    J. Yamaki, A. Yamaji, Layered materials for lithium secondary batteries. Physica B, 105(1), p. 466-470 (1981).
https://doi.org/10.1016/0378-4363(81)90296-5
 
5.    J. Choi, J. Jin, I.G. Jung et al., SnSe2 nanoplate–grapheme composites as anode materials for lithium ion batteries. Chem. Communs. 47(18), p. 5241-5243 (2011).
https://doi.org/10.1039/c1cc10317b
 
6.    K.M. Chung, D. Wamwangi, M. Woda, M. Wuttig, W. Bensch, Investigation of SnSe, SnSe2, and Sn2Se3 alloys for phase change memory applica-tions. J. Appl. Phys. 103(8), p. 083523–083523-7 (2008).
https://doi.org/10.1063/1.2894903
 
7.    D. Chun, R.M. Walser, R.W. Bene, T.H. Courtney, Polarity-dependent memory switching in devices with SnSe and SnSe2 crystals. Appl. Phys. Lett. 24(10), p. 479-481 (1974).
https://doi.org/10.1063/1.1655019
 
8.    T.S. Pan, D. De, J. Mamongo, A.M. Guloy, V.G. Hadjiev, Y. Lin, H.B. Peng, Field effect transistors with layered two-dimensional SnS2–xSex conduc-tion channels: Effect of selenium substitution. Appl. Phys. Lett. 103(9), p.093108-1–5 (2013).
https://doi.org/10.1063/1.4819072
 
9.    R. Schlaf, C. Pettenkofer, W. Jaegermann, Band lineup of a SnS2/SnSe2/SnS2 semiconductor quan-tum well structure prepared by van der Waals epi-taxy. J. Appl. Phys., 85(9), p. 6550-6556 (1999).
https://doi.org/10.1063/1.370160
 
10.    M. Au-Yang, M.L. Cohen, Electronic structure and optical properties of SnS2 and SnSe2. Phys. Rev. B, 178(3), p. 1279-1283 (1969).
https://doi.org/10.1103/PhysRev.178.1279
 
11.    C.Y. Fong, M.L. Cohen, Electronic energy-band structure of SnS2 and SnSe2. Phys. Rev. B, 5(8), p. 3095-3101 (1972).
https://doi.org/10.1103/PhysRevB.5.3095
 
12.    C.Y. Fong, M.L. Cohen, Electronic charge densities for layer semiconductors: SnS2 and SnSe2. J. Phys. C, 7(1), p. 107-112 (1974).
https://doi.org/10.1088/0022-3719/7/1/018
 
13.    I.Ch. Schlüter, M. Schlüter, The electronic structure of SnS2 and SnSe2. phys. status solidi (b), 57(1), p. 145-155 (1973).
 
14.    M. Schlüter, M.L. Cohen, Valence-band density of states and chemical bonding for several non-transition-metal layer compounds: SnSe2, PbI2, BiI3 and GaSe. Phys. Rev. B, 14(2), p. 424-431 (1976).
https://doi.org/10.1103/PhysRevB.14.424
 
15.    F. Aymerich, F. Meloni, G. Mula, Pseudopotential band structure of solid solutions SnSxSe2–x. Solid State Communs. 12(2), p.139-141 (1973).
https://doi.org/10.1016/0038-1098(73)90523-1
 
16.    J. Robertson, Electronic structure of SnS2, SnSe2, CdI2 and PbI2. J. Phys. C: Solid State Phys. 12(22), p. 4753-4766 (1979).
https://doi.org/10.1088/0022-3719/12/22/017
 
17.    R.B. Murray, R.H. Williams, Band structure and photoemission studies of SnS2 and SnSe2: II. Theoretical. J. Phys. C: Solid State Phys. 6(24), p. 3643-3651 (1973).
https://doi.org/10.1088/0022-3719/6/24/023
 
18.    A.K. Garg, O.P. Agnihotri, A.K. Jain, Optical absorption spectrum of tin diselenide single crystals. J. Appl. Phys. 47(3), p. 997-100 (1976).
https://doi.org/10.1063/1.322693
 
19.    B.L. Evans, R.A. Hazelwood, Optical and electrical properties of SnSe2. Brit. J. Appl. Phys. 2(2),
https://doi.org/10.1088/0022-3727/2/11/304
 
20.    G. Domingo, R.S. Itoga, C.R. Kannewurf, Fundamental optical absorption in SnS2 and SnSe2. Phys. Rev. B, 143(2), p. 536-541 (1966).
https://doi.org/10.1103/PhysRev.143.536
 
21.    http://www.abinit.org
 
22.    X. Gonze, B. Amadon, P.-M. Anglade et al., ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Communs. 180(12), p. 2582-2615 (2009).
https://doi.org/10.1016/j.cpc.2009.07.007
 
23.    http://departments.icmab.es/leem/siesta/
 
24.    J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter, 14(11), p. 2745-2779 (2002).
https://doi.org/10.1088/0953-8984/14/11/302
 
25.    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3), p. B864-B871 (1964).
https://doi.org/10.1103/PhysRev.136.B864
 
26.    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4), p. A1133-A1138 (1965).
https://doi.org/10.1103/PhysRev.140.A1133
 
27.    D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45(7), p. 566-569 (1980).
https://doi.org/10.1103/PhysRevLett.45.566
 
28.    C. Hartwigsen, S. Goedecker, J. Hutter, Rela-tivistic separable dual-space Gaussian pseudo-potentials from H to Rn. Phys. Rev. B, 58(7), p. 3641-3662 (1998).
https://doi.org/10.1103/PhysRevB.58.3641
 
29.    P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B, 49(23), p. 16223-16233 (1994).
https://doi.org/10.1103/PhysRevB.49.16223
 
30.    V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B, 44(3), p. 943-954 (1991).
https://doi.org/10.1103/PhysRevB.44.943
 
31.    V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, First-principal calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J. Phys.: Condens. Matter, 9(4), p. 767-808 (1997).
https://doi.org/10.1088/0953-8984/9/4/002
 
32.    P.Y. Yu, M. Cardona, Fundamentals of Semi-conductors: Physics and Materials Properties, 4th ed. Springer-Verlag, Berlin Heidelberg, 2010.
https://doi.org/10.1007/978-3-642-00710-1
 
33.    R.H. Williams, R.B. Murray, D.W. Govan, J.M. Thomas, E.I. Evans, Band structure and photoemission studies of SnS2 and SnSe2. I. Experimental. J. Phys. C.: Solid State Phys. 6(24), p. 3631-3642 (1973).
https://doi.org/10.1088/0022-3719/6/24/022
 
34.    C.A. Formstone, E.T. FitzGerald, J.S. Foord, P.A. Cox, Photoelectron spectroscopy of silver deposition onto the van der Waals faces of SnS2–xSex crystals. Surf. Sci. 238(1–3), p. 199-214 (1990).
https://doi.org/10.1016/0039-6028(90)90078-M
 
35.    C.A. Formstone, E.T. FitzGerald, P.A. Cox, D. O'Hare, Photoelectron spectroscopy of the tin dichalcogenides SnS2–xSex intercalated with cobaltocene. Inorg. Chem. 29(19), p. 3860-3866 (1990).
https://doi.org/10.1021/ic00344a041
 
36.    R.H. Williams, A.W. Parke, The band structure of SnSe2 by angle-resolved photoelectron spectro-scopy. J. Phys. C.: Solid State Phys. 11(12), p. 2549-2559 (1978).
https://doi.org/10.1088/0022-3719/11/12/016
 
37.    R.B. Murray, R.H. Williams, Band structure and photoemission studies of SnS2 and SnSe2: II. Theoretical. J. Phys. C: Solid State Phys. 6(24), p. 3643-3651 (1973).
https://doi.org/10.1088/0022-3719/6/24/023
 
38.    J.J. Yeh, Atomic Calculation of Photoionization Cross-section and Asymmetry Parameters. Gordon and Breach Science Publisher, Amsterdam, 1993.
 
39.    Y. Gao, B. Smandek, T.J. Wagener, J.H. Weaver, F. Lévy, G. Margaritondo, Bremsstrahlung-isochromat studies of conduction-band states in SnS2 and SnSe2. Phys. Rev. B, 35(17), p. 9357-9359 (1987).
https://doi.org/10.1103/PhysRevB.35.9357
 
40.    Y. Bertrand, F. Solal, F. Levy, Experimental band structure of 2H-SnSe2 by synchrotron radiation photoemission spectroscopy. J. Phys. C: Solid State Phys. 17(16), p. 2879-2888 (1984).
https://doi.org/10.1088/0022-3719/17/16/007
 
41.    L. Ley, R.H. Williams, P.C. Kemeny, Spatial symmetries of valence band structures by angularly resolved X-ray photoelectron spectroscopy. Nuovo Cimento B, 39(2), p.715-719 (1977).
https://doi.org/10.1007/BF02725815
 
42.    M.L. Cohen, Electronic charge densities in semi-conductors. Science, 179(4079), p. 1189-1195 (1973).
https://doi.org/10.1126/science.179.4079.1189