1. D.I. Bletskan, Crystalline and Glassy
Chalcogenides of Si, Ge, Sn and Alloys on their Base. Zakarpattia,
Uzhhorod, 2004.
2. B. Palosz, S.
Gierlotka, F. Levy, Polytypism of SnSe2 crystals grown by chemical
transport: structures of six large-period polytypes of SnSe2. Acta
Cryst. C, 41(10), p. 1404-1406 (1985). https://doi.org/10.1107/S0108270185007958
3.
B. Palosz, E. Salje, Lattice parameters and sponta-neous strain
in AX2 polytypes: CdI2, PbI2, SnS2 and SnSe2. J. Appl. Crystallogr.
22(6), p. 622-623 (1989). https://doi.org/10.1107/S0021889889006916
5.
J. Choi, J. Jin, I.G. Jung et al., SnSe2 nanoplate–grapheme
composites as anode materials for lithium ion batteries. Chem. Communs.
47(18), p. 5241-5243 (2011). https://doi.org/10.1039/c1cc10317b
6.
K.M. Chung, D. Wamwangi, M. Woda, M. Wuttig, W. Bensch,
Investigation of SnSe, SnSe2, and Sn2Se3 alloys for phase change memory
applica-tions. J. Appl. Phys. 103(8), p. 083523–083523-7 (2008). https://doi.org/10.1063/1.2894903
7.
D. Chun, R.M. Walser, R.W. Bene, T.H. Courtney,
Polarity-dependent memory switching in devices with SnSe and SnSe2
crystals. Appl. Phys. Lett. 24(10), p. 479-481 (1974). https://doi.org/10.1063/1.1655019
8.
T.S. Pan, D. De, J. Mamongo, A.M. Guloy, V.G. Hadjiev, Y. Lin,
H.B. Peng, Field effect transistors with layered two-dimensional
SnS2–xSex conduc-tion channels: Effect of selenium substitution. Appl.
Phys. Lett. 103(9), p.093108-1–5 (2013). https://doi.org/10.1063/1.4819072
9.
R. Schlaf, C. Pettenkofer, W. Jaegermann, Band lineup of a
SnS2/SnSe2/SnS2 semiconductor quan-tum well structure prepared by van
der Waals epi-taxy. J. Appl. Phys., 85(9), p. 6550-6556 (1999). https://doi.org/10.1063/1.370160
10.
M. Au-Yang, M.L. Cohen, Electronic structure and optical
properties of SnS2 and SnSe2. Phys. Rev. B, 178(3), p. 1279-1283 (1969). https://doi.org/10.1103/PhysRev.178.1279
11.
C.Y. Fong, M.L. Cohen, Electronic energy-band structure of SnS2
and SnSe2. Phys. Rev. B, 5(8), p. 3095-3101 (1972). https://doi.org/10.1103/PhysRevB.5.3095
12.
C.Y. Fong, M.L. Cohen, Electronic charge densities for layer
semiconductors: SnS2 and SnSe2. J. Phys. C, 7(1), p. 107-112 (1974). https://doi.org/10.1088/0022-3719/7/1/018
13.
I.Ch. Schlüter, M. Schlüter, The electronic structure of SnS2 and
SnSe2. phys. status solidi (b), 57(1), p. 145-155 (1973).
14.
M. Schlüter, M.L. Cohen, Valence-band density of states and
chemical bonding for several non-transition-metal layer compounds:
SnSe2, PbI2, BiI3 and GaSe. Phys. Rev. B, 14(2), p. 424-431 (1976). https://doi.org/10.1103/PhysRevB.14.424
15.
F. Aymerich, F. Meloni, G. Mula, Pseudopotential band structure
of solid solutions SnSxSe2–x. Solid State Communs. 12(2), p.139-141
(1973). https://doi.org/10.1016/0038-1098(73)90523-1
16.
J. Robertson, Electronic structure of SnS2, SnSe2, CdI2 and PbI2.
J. Phys. C: Solid State Phys. 12(22), p. 4753-4766 (1979). https://doi.org/10.1088/0022-3719/12/22/017
17.
R.B. Murray, R.H. Williams, Band structure and photoemission
studies of SnS2 and SnSe2: II. Theoretical. J. Phys. C: Solid State
Phys. 6(24), p. 3643-3651 (1973). https://doi.org/10.1088/0022-3719/6/24/023
18.
A.K. Garg, O.P. Agnihotri, A.K. Jain, Optical absorption spectrum
of tin diselenide single crystals. J. Appl. Phys. 47(3), p. 997-100
(1976). https://doi.org/10.1063/1.322693
20.
G. Domingo, R.S. Itoga, C.R. Kannewurf, Fundamental optical
absorption in SnS2 and SnSe2. Phys. Rev. B, 143(2), p. 536-541 (1966). https://doi.org/10.1103/PhysRev.143.536
21. http://www.abinit.org
22.
X. Gonze, B. Amadon, P.-M. Anglade et al., ABINIT:
First-principles approach to material and nanosystem properties.
Comput. Phys. Communs. 180(12), p. 2582-2615 (2009). https://doi.org/10.1016/j.cpc.2009.07.007
23. http://departments.icmab.es/leem/siesta/
24.
J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P.
Ordejon, D. Sanchez-Portal, The SIESTA method for ab initio order-N
materials simulation. J. Phys.: Condens. Matter, 14(11), p. 2745-2779
(2002). https://doi.org/10.1088/0953-8984/14/11/302
26.
W. Kohn, L.J. Sham, Self-consistent equations including exchange
and correlation effects. Phys. Rev. 140(4), p. A1133-A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133
27.
D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a
stochastic method. Phys. Rev. Lett. 45(7), p. 566-569 (1980). https://doi.org/10.1103/PhysRevLett.45.566
28.
C. Hartwigsen, S. Goedecker, J. Hutter, Rela-tivistic separable
dual-space Gaussian pseudo-potentials from H to Rn. Phys. Rev. B,
58(7), p. 3641-3662 (1998). https://doi.org/10.1103/PhysRevB.58.3641
29.
P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron
method for Brillouin-zone integrations. Phys. Rev. B, 49(23), p.
16223-16233 (1994). https://doi.org/10.1103/PhysRevB.49.16223
30.
V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott
insulators: Hubbard U instead of Stoner I. Phys. Rev. B, 44(3), p.
943-954 (1991). https://doi.org/10.1103/PhysRevB.44.943
31.
V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein,
First-principal calculations of the electronic structure and spectra of
strongly correlated systems: the LDA+U method. J. Phys.: Condens.
Matter, 9(4), p. 767-808 (1997). https://doi.org/10.1088/0953-8984/9/4/002
32.
P.Y. Yu, M. Cardona, Fundamentals of Semi-conductors: Physics and
Materials Properties, 4th ed. Springer-Verlag, Berlin Heidelberg, 2010. https://doi.org/10.1007/978-3-642-00710-1
33.
R.H. Williams, R.B. Murray, D.W. Govan, J.M. Thomas, E.I. Evans,
Band structure and photoemission studies of SnS2 and SnSe2. I.
Experimental. J. Phys. C.: Solid State Phys. 6(24), p. 3631-3642 (1973). https://doi.org/10.1088/0022-3719/6/24/022
34.
C.A. Formstone, E.T. FitzGerald, J.S. Foord, P.A. Cox,
Photoelectron spectroscopy of silver deposition onto the van der Waals
faces of SnS2–xSex crystals. Surf. Sci. 238(1–3), p. 199-214 (1990). https://doi.org/10.1016/0039-6028(90)90078-M
35.
C.A. Formstone, E.T. FitzGerald, P.A. Cox, D. O'Hare,
Photoelectron spectroscopy of the tin dichalcogenides SnS2–xSex
intercalated with cobaltocene. Inorg. Chem. 29(19), p. 3860-3866 (1990). https://doi.org/10.1021/ic00344a041
36.
R.H. Williams, A.W. Parke, The band structure of SnSe2 by
angle-resolved photoelectron spectro-scopy. J. Phys. C.: Solid State
Phys. 11(12), p. 2549-2559 (1978). https://doi.org/10.1088/0022-3719/11/12/016
37.
R.B. Murray, R.H. Williams, Band structure and photoemission
studies of SnS2 and SnSe2: II. Theoretical. J. Phys. C: Solid State
Phys. 6(24), p. 3643-3651 (1973). https://doi.org/10.1088/0022-3719/6/24/023
38.
J.J. Yeh, Atomic Calculation of Photoionization Cross-section and
Asymmetry Parameters. Gordon and Breach Science Publisher, Amsterdam,
1993.
39. Y. Gao, B. Smandek, T.J.
Wagener, J.H. Weaver, F. Lévy, G. Margaritondo,
Bremsstrahlung-isochromat studies of conduction-band states in SnS2 and
SnSe2. Phys. Rev. B, 35(17), p. 9357-9359 (1987). https://doi.org/10.1103/PhysRevB.35.9357
40.
Y. Bertrand, F. Solal, F. Levy, Experimental band structure of
2H-SnSe2 by synchrotron radiation photoemission spectroscopy. J. Phys.
C: Solid State Phys. 17(16), p. 2879-2888 (1984). https://doi.org/10.1088/0022-3719/17/16/007
41.
L. Ley, R.H. Williams, P.C. Kemeny, Spatial symmetries of valence
band structures by angularly resolved X-ray photoelectron spectroscopy.
Nuovo Cimento B, 39(2), p.715-719 (1977). https://doi.org/10.1007/BF02725815