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Abstract. The article describes a numerical method based on Fourier transform for 
studying propagating optical waves in dielectric planar waveguides. The inverse problem 
to the known direct one in waveguide investigation is proposed, namely a search of light 
wavelengths according to taken values of propagation constants. For each constant a set 
of wavelengths is obtained, among which an input value of wavelength from direct 
problem exists necessarily. A high accuracy of the method proposed is confirmed by 
exact values obtained by solution of transcendental dispersion equation. This method is 
tested on many examples, in particular, for waveguides of different permittivity profiles 
or for TE and TM modes propagate there. 
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1. Introduction  

Dielectric planar waveguides are the structures used to 
limit and control light in waveguide devices and 
integrated optics circuits [1]. One of the most common 
applications of such waveguides today is semiconductor 
distributed feedback micro-lasers [2-4] using them as an 
active layer. These lasers provide high speed data 
transfer, and single-mode generation is achieved by 
feedback filter in a form of corrugated layer. The filter is 
formed inside waveguide semiconductor structure 
parallel to the active layer. 

For designing the devices based on planar 
waveguides, it is necessary to know propagation 
constants of waveguide modes that correspond to a taken 

wavelength. A number of approximate methods are used 
to determine propagation constants of localized modes in 
gradient planar waveguides [5, 6], which for the first 
time have been developed for analyzing the problems of 
quantum mechanics. As the structure of wave equation 
for modes of TE polarization is similar to that of the 
stationary Schrödinger equation in quantum mechanics, 
it is possible to use its analytical methods, particularly 
WKB (Wentzel–Kramers–Brillouin) approximation [6], 
for studying the planar waveguides. 

A typical permittivity distribution of symmetric 
gradient waveguide is shown in Fig. 1, where ε0 is the 
substrate permittivity, ε1 is the maximum value of 
permittivity in the active layer. For some profiles of 
waveguide permittivity ε(x), the accurate analytical 
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solutions are found [7-9]. As in a waveguide ε1 > ε0, 
propagation of a localized guided mode with the 
propagation constant β is possible, and the electric field 
distribution is described by the following function: 
E(x,z) = E(x) exp(–iβz), where x and z are the transverse 
and longitudinal coordinates, respectively, E(x) is the 
electric field amplitude, i – imaginary unit. But, even in 
the simplest case (a step profile of permittivity as 
particular case of the gradient one), a search of 
propagation constants leads to solution of transcendental 
algebraic equation [10]. Problem becomes more 
difficult, if the permittivity varies according to a 
complex function along the axis x. Well-known methods 
to find propagation constants and waveguide mode fields 
are mostly analytical, too cumbersome, and their 
accuracy is rather low. For example, WKB 
approximation allows to calculate with a high accuracy 
these propagation constants that correspond to field 
distributions with a large number of nodes (points where 
electromagnetic field is zero). Mostly, in planar 
waveguides situation is somewhat different: it is 
necessary to find the values of propagation constants for 
the lowest modes with a small number of nodes (1st, 2nd 
order modes) or without them (basic mode) in 
appropriate electromagnetic field. 

The current state of computer hardware and 
software sophistication allows using the numerical 
methods effectively to search propagation constants and 
fields of gradient planar waveguides. A numerical 
method of wave equation solution for planar waveguides 
in a coordinate domain is known. In this method, the 
second derivative by coordinate is replaced by the 
difference operator, and ultimately the problem is 
reduced to a solution of the eigenvalue/eigenvector 
problem [11, 12]. But this method is characterized by 
low accuracy, because electromagnetic field may occupy 
a large spatial range, especially for waveguide modes 
with large indices (higher order modes). 

In recent years, the numerical method for finding 
the propagation constants based on the wave equation 
Fourier transform was developed [13], and it is 
characterized by high accuracy of analysis. By this 
method, it is possible to find all the propagation 
constants of localized modes and appropriate discrete 
Fourier transforms of field distribution in a waveguide in 
one calculation cycle [14]. The method was tested on 
many gradient waveguides. For example, let waveguide 
permittivity is described by a function ε(x) = ε0 + (ε1 –
 ε0)/cosh2(2x/d) (see the figure), where d is the thickness 
of active layer. Then for this waveguide, an exact 
analytical solution exists, and exact values of 
propagation constants are found [1, 7], which are listed 
in the left column of Table 1 for a waveguide with the 
following parameters: ε0 = 2.25, ε1 = 2.89, d = 5 μm. 
Electro-magnetic wave of the length λ = 1 μm propa-
gates in the structure. At this wavelength, the waveguide 
has 13 guided modes. Values shown in the right column 
of Table 1 are the propagation constants calculated using 
the numerical method described in [14]. 

 
 
Image of permittivity distribution for a symmetric gradient 
waveguide. 
 

The propagation constants of waveguide modes 
with indices from 0 to 11 calculated by both methods are 
the same, except the last one, appropriate fields of which 
have a maximum length in the coordinate space; so for 
them a small error is available. This numerical method 
provides high calculation accuracy and, as the research 
shows, it is characterized by high numerical stability. A 
search of propagation constants by using the numerical 
method [13, 14] is reduced to the problem on 
eigenvalues (square of the propagation constants) and 
eigenvectors (field discrete Fourier transforms in a 
waveguide) that look like MV = β2V, where M is some 
square matrix depending on the parameters mentioned 
above, V is the vector-column, the elements of which are 
actually eigenvectors. 

It often happens that one needs to solve the inverse 
problem, i.e., for a planar waveguide with certain 
parameters the propagation constant of some guided 
mode is known, and it is necessary to find the wave-
length that corresponds to the taken propagation 
constant. This problem arises in the analysis of  
 

 
 

Table 1. Values of propagation constants (μm–1) in a 
gradient waveguide obtained by two methods. 

Index of 
propagation 

constant 
Exact method [1] Numerical method 

[14] 

0 10.59058151 10.59058151 
1 10.41422086 10.41422086 
2 10.25044271 10.25044271 
3 10.09985917 10.09985917 
4 9.96306855 9.96306855 
5 9.84064604 9.84064604 
6 9.73313382 9.73313382 
7 9.64103073 9.64103073 
8 9.56478192 9.56478192 
9 9.50476895 9.50476895 
10 9.46130077 9.46130077 
11 9.43460608 9.43460608 
12 9.42482808 9.42482739 
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waveguide distributed feedback lasers by using the 
coupled wave method [2]. In the course of this analysis, 
all localized modes at which generation is possible are 
determined [15]. So, the aim of the work is to show how 
this problem can be solved successfully by using the 
numerical method based on Fourier transform of wave 
equation. The task is again reduced to another 
eigenvalue/eigenvector problem where square of 
wavelengths are eigenvalues: M1V = λ2M2V, where M1 
and M2 are the square matrix with the dimension defined 
by necessary accuracy of calculations; λ is the sought 
wavelength, V – vector-column corresponding to the 
Fourier transform of field distribution. 

2. One-dimensional wave equations  
and their Fourier transforms 

If electric field is perpendicular to the plane of incident 
wave on the interface of waveguide film and substrate, 
i.e., E = {0, Ey, 0}, in this structure the transverse 
electric modes (TE modes) are formed, for which the 
wave equation is written as [15] 

( ) ( ) ( ) ( )xExEx
dx

xEd 2
2

2

2 2
β=ε⎟

⎠
⎞

⎜
⎝
⎛
λ
π

+ .  (1) 

If electric field is parallel to the plane of incident 
wave, i.e., H = {0, Hy, 0}, this case corresponds to the 
transverse magnetic modes (TM modes), and wave 
equation will look like: 
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Functions E(x), H(x) describing fields in waveguide 
localized modes and their first derivatives tend towards 
zero at x → ±∞. That is why, for these functions, their 
first and second derivatives the Fourier transform exists. 
Function integrity in (1) and (2) is an important aspect of 
this approach. As the expressions for field components 
of appropriate modes are identical, it is sufficient to 
introduce the Fourier transforms only for one of them, 
e.g., for E(x) [16]: 
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∞−
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where u is the spatial frequency, E(u) – Fourier 
transform of electric field. 

Besides, for functions for which the Fourier 
transforms exist, i.e., F{g(x)} = G(u), F{h(x)} = H(u), 
the following equation is yet right [16]: 

( ) ( ){ } ( ) ( )dvvHvuGxhxgF ∫
∞

∞−

−= ,   (6) 

where F{…} is the Fourier transform. Equation (6) 
describes the convolution theorem. 

One takes the Fourier transforms of left and right 
parts of (1) and (2) taking into account the expressions 
(3) to (6). As a result, the transition from differential 
equations to integral ones occurs, and we obtain next 
wave equations in a frequency domain: 
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The Fourier transform of permittivity is 

( ) ( ) ( ){ }
( ) ( ) ( ){ },010

010

xfFu
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=ε−ε+ε=ε

 

where δ(u) is the Dirac delta function in a spatial 
frequency domain, f(x) – function describing the 
permittivity distribution. Besides, the following 
condition is imposed on the function f(x): 

( ) Mdxxf <∫
∞

∞−

,     (9) 

where M is a finite number. 

3. A search of wavelengths according  
to the taken propagation constant 

To demonstrate a way of finding the wavelengths corres-
ponding to the taken propagation constant β, let’s 
consider the equation (7) in another form: 

( ) ( ) [ ] ( )uEudvvEvu 22222 44 π+βλ=−επ ∫
∞

∞−

. (10) 

In (10), one can replace the integral by sum and go 
to the equation in a discrete form. By changing 
continuous values of u and v by the discrete ones, we 
obtain: 
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where N is the number of points in which electric field is 
sought; s and k are the indices on which summation is 
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Table 2. Propagation constants (μm–1) for several waveguides calculated for the wavelength 1 μm. 

Index of propagation 
constant Parabolic profile Gauss profile Exponential profile 

0 10.58687909 10.52227751 10.47134576 

1 10.39522986 10.21638483 10.21797941 

2 10.20000124 9.94381586 10.06583391 

3 10.00114042 9.71247251 9.93737112 

4 9.79935523 9.53409763 9.83825131 

5 9.59914463 9.43166891 9.75205958 

6 9.43189030 9.68270923 

… … 

13 9.43890608 

14 9.42980648 

15 9.42530846 

 

For this waveguide,  
7 guided modes exist 

For this waveguide,  
6 guided modes exist 

For this waveguide,  
16 guided modes exist 

done: ( ) 21, −≤ Nks ; Δ is the partitioning step of 
maximum spatial frequency umax: Numax=Δ . Value of 
N should be taken large enough and unpaired, while its 
ratio with the frequency umax should give an optimum 
value of partitioning step Δ. It is also assumed that the 
function E(sΔ) is sought in the interval from 2maxu−  to 

2maxu , and beyond the field attenuates very quickly, 
i.e., ( ) 02max →> uuE . 

One can write the last equation for all discrete 
spatial frequencies us = sΔ. Then, a set of these equations 
will be written in a matrix form where the value of 
square wavelength λ2 is common to all values of index s: 

VMVM 21
2λ= , (12) 

where M1 is the square symmetric matrix of elements 
4π2ε(sΔ – kΔ), M2 – diagonal matrix of elements 
β2 + 4π2(sΔ)2 in the main diagonal, V – vector-column of 
elements E(sΔ). 

So, the problem is reduced to the problem on 
eigenvalues (square wavelength) and eigenvectors 
(discrete Fourier transform of field E(x)) which 
correspond to the found value of λ2. By carrying out the 
inverse discrete Fourier transform of eigenvector, we 
obtain field distribution along coordinate x for every 
value of wavelength corresponding to the appropriate 
localized mode. 

Propagation constants βv of symmetric planar 
waveguide for a taken wavelength λ satisfy the 

following inequality: 
λ
π

<β<
λ
π 10 22 nn

v , where 

00 ε=n  and 11 ε=n  are the refractive indices of 

substrate and active layer, respectively. For the inverse 
problem, the wavelengths λv must satisfy the following 
inequality accordingly to the known propagation 
constant β: 

β
π

<λ<
β
π 10 22 nn

v . (13) 

For all the propagation constants from Table 1, 
matching sets of wavelengths are found using the matrix 
equation (12) and inequality (13). In every set, the 
wavelength λ = 1 μm is available, which confirms 
correctness of calculations. If we take an arbitrary 
wavelength from all sets and use the equation 
MV = β2V, we find appropriate propagation constant 
among the set obtained again. A solution of both direct 
and inverse problems was carried out using the 
following numerical process parameters: number of 
points N = 2001, maximum spatial frequency umax = 
10 μm–1. They are selected from the subject to the 
Whittaker-Shannon sampling theorem [16]. 

The permittivity of investigated waveguides is 
described by functions of the following type: 
ε(x) = 2.25 + 0.64 f (2x/d), where d = 5 μm. One can 
check easily that all the functions f (2x/d) presented in 
Tables 2 and 3 satisfy the condition (9). In these tables, 
several examples for the waveguide permittivity profiles 
are shown, so there is a possibility to check a direct 
problem by using the inverse one. For the direct 
problem, calculations are carried out at the light 
wavelength λ = 1 μm, for the inverse one they are done 
using the propagation constants with the indices 0, 1, 2, 
m – 2, m – 1 and m from Table 2, where m is the last 
number of β (it corresponds to the smallest propagation 
constant according to its value). 
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Table 3. Light wavelength (μm) obtained via equations (12) and (13) for the propagation constants from Table 2. 

Index of propagation 
constant Parabolic profile Gauss profile Exponential profile 

0 0.99999999946 1.00000000000 0.99999999978 

1 0.99999999944 0.99999999998 1.00000000018 

2 0.99999999965 0.99999999959 0.99999999999 

m – 2 0.99999999930 0.99999999948 0.99999999935 

m – 1 0.99999999909 1.00000000016 1.00000000007 

m 0.99999999953 0.99999999983 1.00000000024 
 
 

It is seen that for the taken parameters of 
waveguide and numerical process, the largest number of 
guided modes (n = 16) will be generated in the structure 
with an exponential profile of permittivity, and the 
smallest one (n = 6) will be in the waveguide with a 
Gauss distribution. 

Obviously, for any propagation constant from 
Table 2, among the set of wavelengths found via 
equations (12) and (13), it should be the wavelengths 
very close to λ = 1 μm. The wavelength values for 6 
different modes (3 lowest and 3 highest indices) are 
adduced in Table 3. 

Our analysis of results from Table 3 shows that 
m101 9μ<−λ − , i.e., the relative error of computations 

is less than 10–9. Therefore, for this problem accuracy of 
calculations by using the proposed numerical method is 
extremely high. 

4. Conclusion 

The results showed that the inverse problem of a search 
of waveguide mode wavelengths corresponding to the 
taken propagation constant is solved with sufficiently 
high accuracy. This method is use comfortably for 
planar gradient waveguides and for complex ones 
consisting of several layers with certain thicknesses and 
refractive indices. Mainly, these waveguides are used in 
semiconductor lasers [15]. 

Accuracy of computations is defined by numerical 
process parameters N and umax, i.e., these parameters 
should have such values that the sampling theorem [16] 
is practically performed. In this case, high accuracy of 
solution can be provided. One can see from Table 1 that 
the propagation constant of a waveguide mode with the 
highest index is defined with the least accuracy. For this 
mode, the electric field decreases slowly with increasing 
the coordinate x. Therefore, N value should be taken 
large enough, and Δ value should be done small, which 
can be provided by a small spatial frequency umax. On 
the other hand, umax cannot be taken quite small, as in 
this case values of ( )2maxuE ±  and ( )2maxu±ε  will be 
different from zero. To select the maximum spatial 

frequency, one can use the criterion proposed in [17]. 
According to it, some function I on umax is sought using 
the rule: 

( ) ( ){ } duxfFuI
u

u

2
5.0

5.0
max

max

max

∫
−

, (14) 

where F{f (x)} is the Fourier transform of function f (x). 
This integral goes to saturation at increase of umax, 

so the bottom boundary of acceptable values can be 
determined from the condition that I (umax) is virtually 
unchanged at change of spatial frequency. If these 
conditions are provided, by the method proposed one 
can find the solutions of both direct and inverse 
problems that concern planar gradient waveguides with 
high accuracy. 
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