Semiconductor Physics, Quantum Electronics and Optoelectronics, 20 (1) P. 001-018 (2017).
DOI: https://doi.org/10.15407/spqeo20.01.001


References

1. Nickel H.U., Doleschel A. and Schmid M. Multichannel rotary joints for surveillance radars – State-of-the-art and future trends. 14-th Intern. Radar Symposium (IRS), Dresden, 2013, P. 282–287.
 
2.    Glenn Dorsey, High-Speed Data Transmission and Rotary Platforms: Slip Rings, Fiber Optic Rotary Joints, and Multiplexers. MOOG Components Group. Application Note #204. 2005. https:. www.researchgate.net/publication/242700826.
 
3. Ankerhold Georg, Laux Udo, Botter Oleg, Bestvater Marina Low-Loss Coupling of Rotating Single-Mode Fibers using Liquid Waveguides. SSD '09. 6-th Intern. Multi-Conf. on Systems, Signals and Devices, 2009.
 
4. Jia Da-Gong, Jing Wen-Cai, Zhang Yi-Mo, Zhou Ge, Zhang Jin, Tang Feng. Low-loss fiber optic rotary joint using C-lens collimators. Optoelectron. Lett. 2005. 1, Issue 3. P. 221–223.
https://doi.org/10.1007/BF03033848
 
5. W. Jing, D. Jia, F. Tang, H. Zhang, Y. Zhang, G. Zhou, J. Yu, F. Kong, and K. Liu, Design and implementation of a broadband optical rotary joint using C-lenses . Opt. Express, Vol. 12, No. 17, p. 4088-4093, Aug. 2004.
https://doi.org/10.1364/OPEX.12.004088
 
6.    FORJ CATALOG 2009. Prinscetel Inc. http:.pdf.directindustry.com/pdf/princetel/forj-catalog-2009o/29228-55142.html.
 
7. Dagong Jia, Wencai Jing, Yimo Zhang, Guanghui Wang, Feng Tang, Jin Zhang, Bidirectional dynamic data transmission through a rotary interface. Opt. Eng. 2005. 44, No. 5.
https://doi.org/10.1117/1.1906235
 
8. Introduction to Multiplexing in Fiber Optics. MOOG Components Group. Application Note #213. http:.www.moog.com/literature/MCG/ MultiplexingAppnote.pdf.
 
9. Farries M., Sturgess T. and Legg T. Transmission of digital and analogue data on a single mode fibre optic network for aircraft. Avionics, Fiber Optics and Photonics Technology Conference (AVFOP), 2012 IEEE, Cocoa Beach, FL, 2012. P. 72–73.
https://doi.org/10.1109/avfop.2012.6344028
 
10.    M. Oskar van Deventer, Fundamentals of Bidirectional Transmission over a Single Optical Fibre. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
https://doi.org/10.1007/978-94-009-1579-4
 
11.    Svechnikov G. and Shapar V. Optical rotary connector for transfer of data signals from fiber optic sensors placing on rotary objects. Specialty Fiber Optic Systems for Mobile Platforms. OE/FIBERS'91 SPIE Intern. Symposium, Boston, Massachusetts USA. Proc. SPIE. 1991. 1589. P. 24–31.
https://doi.org/10.1117/12.50983
 
12.    US Patent N 4,027,945, G02B 5/16. Optical sliprings. Myren L. Iverson. 07.06.77.
 
13.    UK Patent N 1 587 531, G02B 5/16. Improvements relating to connectors. Andrew Foubister Aitkenhead, Melvyn Ramsay Bell, John Malcolm Morrison, Donald Ferguson Walker. 08.04.81.
 
14.    USSR Inventing Certificate N 267390. S.V. Svechnikov, V.N. Shapar, R.P. Djangobegov, A.F. Ilyin et al. (USSR). Appl. No 3156922/3156923; filed. 08.12.1986; date of issue 04.01.1988, not published.
 
15. Japanese Patent N JPS63108310 (A), G02B6/26, G02B6/36. Optical Rotary Joint. Urata Harushige 13.05.1988.
 
16. European Patent Application N EP1134600 (A1), G02B6/36, G02B6/38, G02B6/40. Multiple path rotary optical connector. Woick Lothar, Loon Karel Henrik van. 19.09.2001.
 
17.    Svechnikov G., Shapar V. Multichannel optical rotary connector for noncontact transfer of data signals between relatively moving bodies. OE/FIBERS'91, SPIE Intern. Symposium, Boston, Massachusetts, USA. Proc. SPIE. 1991. 1580. P. 391–394.
https://doi.org/10.1117/12.135396
 
18.    Shapar V., Svechnikov S. A small-size multi-channel optical rotary joint with ring fiber optic converters. Kosmichna Nauka i Tekhnologiya. SUPPLEMENT. 2003. 9, No. 2. P. 36–40 (in Ukrainian).
 
19.    Shapar V.N. A small-sized multi-channel optical rotary joint for optical sensors based on rotating objects. The Seventh International Conference on Optoelectronics, Fiber Optics and Photonics, December 9-15, 2004, Cochin, India.
 
20. US Patent N 2012213472 (A1), G02B6/26. Fiber Bundle Based Passive Bi-Directional off Axis FORJ with Center Bore. Louis Violante, Boying B Zhang, Hong Zhang. 23.08.2012.
 
21.    Johansson Mathias, Hard Sverker, Design, fabrication, and evaluation of a multichannel diffractive optic rotary joint. Appl. Opt. 1999. 38, No. 8. P. 1302–1310.
https://doi.org/10.1364/AO.38.001302
 
22.    Shapar, V.M., Svechnikov, S.V., Indutnij I.Z. et al. A Multi-Channel Optical Rotary Joint on the Basis of Off-Axis Holographic Fresnel Lenses. 8-th Intern. Conf. on Laser and Fiber-Optical Networks Modeling, June 2006. P. 378–383.
https://doi.org/10.1109/lfnm.2006.252068
 
23.    US Patent N 4,854,662, G02B 6/36. Optical data signal apparatus for optically coupling plurality of data channels between stationary and rotating systems. Marvin F. Estes, Arnold W. Lungershausen. 08.08.1989.
 
24.    US Patent N 4,875,756, G02B 6. Fresnel lens apparatus for optically coupling a plurality of data channels. Marvin F. Estes, Arnold W. Lungershausen. 24.10.1989.
 
25. UK Patent N 2183416, H04B 9/00. Apparatus for transmitting radiation between rotating members. Gordon Jeffrey Hanson, Martin Phillip Owen. 03.06.87.
 
26.    US Patent N 4,519,670, G02B 5/14. Optical waveguide slip ring assembly. James G. Hamilton. 28.05.85.
 
27. DE Patent N 3,346,342 A1, H04B9/00. Optische Kopplungsvorrichtung mit Drehkupplung. E. Prinz, K. Schwepfinder, H. Bunke, H. Degwert. 12.06.1986.
 
28. US Patent N 4,109,997, G02B 23/02. Optical slip rings. Myren L. Iverson. 29.08.78.
 
29. Heizel T. and Martens G. Optical slip ring for off-axis high-bit-rate data transmission. Appl. Opt. 1986. 25, No. 5. P. 775–779.
https://doi.org/10.1364/AO.25.000775
 
30. US Patent N 4,934,783, G02B 6/26. Off-axis fiber optic rotary joint. Peter E. Jacobson. 19.06.1990.
 
31.    DE Patent N 3326661 A1, G02B 5/176. Lichtwellenleiter-Drehkuppler. Weissenborn Bernd, Melchior Friedheim, Figge Johannes. 31.01.85.
 
32.    US Patent N 4,525,025, G02B 5/14, G02B 7/26. Fiber optic rotary joint using a reflective surface and tangentially mounted rotor and stator optical fibers. Thomas C. Hohman, Norris E. Lewis, Michael B. Miller 25.06.1985.
 
33.    CA Patent N 1239822 (A), IPC4 G02B6/36. Multiple Pass Optical Rotary Joint. Spenser William K., Oliver John B. 08.02.88.
 
34.    Oliver John, Purdy John, Smith Graham, Data Integrity Key Design Factor in Fiber Optic Rotating Interfaces. SEA Technology. 1988. 29, No. 7. P. 32–36.
 
35.    US Patent N 410,999, G02B 23/02. Optical slip rings. Myren L. Iverson. 29.08.78.
 
36. US Patent N4,872,737, G02B 6/36. Multi-port fiber optic rotary joint. Toshio Fukahori, Hideyuki Takashima, Hitoshi Morinaga. 10.10.89.
 
37. US Patent N 5,157,745, G02B 6/26. Multi-channel fiber optic rotary joint for single-mode fiber. Gregory H. Ames. 20.10.92
 
38. US Patent N 5,371,814, G02B 6/32. Passive, multi-channel fiber optic rotary joint assembly. Gregory H. Ames, Roger L. Morency. 06.12.94.
 
39.    US Patent N 5,442,721, G02B 6/36. Fiber-optic rotary join with bundle collimator assemblies. Gregory H. Ames. 15.08.95.
 
40.    US Patent N 6,301,405, G02B 6/26. Multi-channel fiber-optic rotary joint. Mithel J.Keil. 09.10.01.
 
41.    International Patent N WO2008/077624 A1, G02B 6/36. Optical rotary joint with high return loss. Popp Gregor, Brau Josef, Rank Matthias. 03.07.08.
 
42.    Jia Da-gong, Zhang Pei-Song, Jing Wen-Cai, Tan Jun, Zhang Hong-Xia, and Zhang Yi-Mo. Design of a multi-channel free space optical interconnection component. Optoelectron. Lett. 2008. 4, No. 6. P. 0407–0409.
 
43.    US Patent N 2012,170888 (A1), G02B6/26. Multi-Channel Electro-Magnetic Rotary Joint Using a Trapezoidal Metamaterial De-Rotating Mechanism. Violante Louis D, Zhang Boying B, Zhang Hong. 05.01.2012.
 
44.    US Patent N 4,447,114, G02B 7/26. Optical Slip Rings. Johan W. Koene. 30.08.83.
 
45. US Patent N 2006,133799 (A1), G02B5/08, G02B6/26, G02B6/42, H04B10/11, H04B10/25, H04B10/80. Contactless connector. Koitabashi Hiroyuki. 22.01.2006.
 
46. US Patent N 2006,202135 (A1), G02B27/00, H01F38/18, H04B10/11, H04B10/25. Non-Contact Connector. Koitabashi Hiroyuki. 14.10.2006.
 
47.    US Patent N 2009,136175 (A1), G02B5/08, G02B6/26, G02B6/42, H04B10/11, H04B10/25, H04B10/80. Non-Contact Connector. Koitabashi Hiroyuki. 28.05.2009.
 
48.    US Patent N 4,460,242, G02B 5/14, G02B 5/16. Optical Slip Ring. Ernest H. Birch. 17.07.1984.
 
49.    US Patent N 4,943,137, G02B 6/32. Multi-channel, off-axis, bi-directional fiber-optic slip ring. J. Alexander Speer. 24.07.90.
 
50.    Machida H., Kobayashi H., Akedo J., Sawada K., Yasukawa T., Iino R. Optical rotary connector. Appl. Opt. 1988. 27, No.15. P. 3078–3080.
https://doi.org/10.1364/AO.27.003078
 
51.    Shapar V., Svechnikov S., Oleksenko P. A multi-channel optical rotary connector for space-based radar. Kosmichna Nauka i Tekhnologiya. SUPPLEMENT. Vol. 9, #2, p.30-35, 2003 (in Ukrainian).
 
52.    Glenn F. Dorsey. Fiber Optic Rotary Joints – A Review. IEEE Transactions on Components, and Manufacturing Technology, V. CHTM-5, N.1, March 1982.
 
53.    Churilovskyi V.N. Theory of Optical Devices. Moscow-Leningrad: Mashgiz, 1966. 564 p. (in Russian).
 
54.    Smith W.J. Modern Optical Engineering. 3rd edition. 2000.
 
55.    Svechnikov S.V., Shapar V.N. Analysis of informative capacity of the optical rotary joint of compensative principle of action with the Dove prism and lens collimator. Measuring and computing devices in technological processes. 2010. 1. p. 48–55 (in Russian).
 
56.    Sivulhin D.V. Basic Course of Physics. Optics. Moscow, Nauka, 1980. 752 p. (in Russian).
 
57.    Shapar V.N. An analysis of rotary dependence of coefficient of transmission of optical rotary connector with mirror compensator. Measuring and computing devices in technological processes. 2007. 2. P. 48–53 (in Ukrainian).
 
58. Epshtein M.I. Measurements of Optical Radiation in Electronics. Moscow: Energoatomizdat, 1990. 254 p. (in Russian).