Semiconductor Physics, Quantum Electronics and Optoelectronics, 20 (1) P. 019-025 (2017).
DOI: https://doi.org/10.15407/spqeo20.01.019


References

1.    Moh G.H. Experimental and descriptive ore mineralogy. Neues Jahrbuch für Mineralogie – Abhandlungen. 1976. 128, No. 2. P. 146–152.
 
2.    Kokhan A.P. The interaction in Ag2X–BIVX2 (BIV – Si, Ge, Sn; X = S, Se) systems and properties of compounds: Abstract of Dissertation … Cand. Sci. (Chem.), Uzhhorod, 1996. 21 p.
 
3.    Olekseyuk I.D., Kogut Y.M., Fedorchuk A.O., Piskach L.V., Gorgut G.P., Parasyuk O.V. The Ag2S–GeS2 system and Ag2GeS3 crystal structure. Naukovyi visnyk Volyns'koho Natsional'noho Universytetu im. Lesi Ukrainky. Neorhanichna Khimiia. 2010. 16. P. 25–33 (in Ukrainian).
 
4.    Petrov A.V., Orlov V.M., Zaitsev V.K., Feigel'man V.A. Characteristic of the thermal conductivity of Ag8MX6 compounds having complex crystal structures. Fiz. Tverd. Tela. 1975. 17. P. 3703–3705 (in Russian).
 
5.    He Q., Qian T., Zai J., Qioa Q., Huang S., Li Y., Wang M. Efficient Ag8GeS6 counter electrode prepared from nanocrystal ink for dye-sensitized solar cells. J. Mater. Chem. A. 2015. 3, No. 40. P. 20359–20365.
https://doi.org/10.1039/C5TA05304H
 
6.    Osipishin I.S., Gasii B.I., Butsko N.I. The investigation of fundamental absorption edge of argyrodite and canfieldite crystals. Fiz. Tekh. Poluprovodn. 1974. 10, No. 8. P. 1609–1611 (in Russian).
 
7.    Kinduris A.S., Bendorius R.A., Senulene D.B. The changes of fundamental absorption edge of Ag8MIVXVI6 at the polymorphic transformations. Fiz. Tekh. Poluprovodn. 1976. 10, No. 8. P. 1544–1547 (in Russian).
 
8.    Osipishin I.S., Butsko N.I., Gasii B.I., Zhezhnich I.D. Thermally stimulated conductivity and photoelectric properties of argyrodite and canfieldite. Fiz. Tekh. Poluprovodn. 1972. 6, No. 6. P. 1121–1123 (in Russian).
 
9.    Chbani N., Cai X., Loireau-Lozac'h A.M., Guittard M. Ternaire argent-germanium-sulfure. Quasibinaire disulfure de germanium – sulfure d'argent. Conductivite electrique du verre le plus riche en argent. Mater. Res. Bull. 1992. 27, No. 11. P. 1355–1361.
https://doi.org/10.1016/0025-5408(92)90101-5
 
10.    Eulenberger G. Die Kristallstruktur der Tieftemperaturmodifikation von Ag8GeS6 – Synthetischer Argyrodit. Monatshefto für Chemie. 1977. 108. P. 901–913.
https://doi.org/10.1007/BF00898056
 
11.    Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964. 136, No. 3. P. B864–B871.
https://doi.org/10.1103/PhysRev.136.B864
 
12.    Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965. 40, No. 4. P. A1133–A1138.
https://doi.org/10.1103/PhysRev.140.A1133
 
13.    Anisimov V.I., Aryasetiawan F., Lichtenstein A.I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J. Phys.: Condens. Matter. 1997. 9, No. 4. P. 767–808.
https://doi.org/10.1088/0953-8984/9/4/002
 
14.    Cococcioni M., de Gironcoli S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B. 2005. 71. P. 035105-1–035105-16.
https://doi.org/10.1103/PhysRevB.71.035105
 
15.    Soler J.M., Artacho E., Gale J.D., García A., Junquera J., Ordejón P., Sánchez-Portal D. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter. 2002. 14, No. 11. P. 2745–2779.
https://doi.org/10.1088/0953-8984/14/11/302
 
16.    http:.icmab.cat/leem/siesta/
 
17.    Chadi D.J., Cohen M.L. Special points in the Brillouin zone. Phys. Rev. B. 1973. 8, No. 12. P. 5747–5753.
https://doi.org/10.1103/PhysRevB.8.5747
 
18.    Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976. 13, No. 12. P. 5188–5192.
https://doi.org/10.1103/PhysRevB.13.5188
 
19.    Kashida S., Watanabe N., Hasegawa T., Iida H., Mori M., Savrasov S. Electronic structure of Ag2S, band calculation and photoelectron spectroscopy. Solid State Ionics. 2003. 158, No. 1-2. P. 167–175.
https://doi.org/10.1016/S0167-2738(02)00768-3
 
20.    Foix D., Gonbeau D., Granier D., Pradel A., Ribes M. Electronic structure of thiogermanate and thioarseniate glasses: experimental (XPS) and theoretical (ab initio) characterizations. Solid State Ionics. 2002. 154-155. P. 161–173.
https://doi.org/10.1016/S0167-2738(02)00424-1
 
21.    Il'ina A.A., Stenina I.A., Lysanova G.V., Yaroslavtsev A.B. Synthesis and ionic conductivity of silver magnesium zirconium molybdates. Inorganic materials. 2009. 45(4), P. 436–439.
https://doi.org/10.1134/S0020168509040207