Semiconductor Physics, Quantum Electronics and Optoelectronics, 20 (1) P. 026-033 (2017).
DOI: https://doi.org/10.15407/spqeo20.01.026


References

1.    Zakery A., Elliott S.R. Optical Non-linearities in Chalcogenide Glasses and their Applications. Berlin-Heidelberg, Springer-Verlag, 2007.
 
2.    Zakery A., Shafmirzaee H. Modeling of enhancement of nonlinearity in oxide and chalcogenide glasses by introduction of nanometals. Phys. Lett. A. 2007. 36. P. 484–487.
https://doi.org/10.1016/j.physleta.2006.09.077
 
3.    Tanaka K. Optical nonlinearity in photonic glasses. J. Mater. Sci.: Mater. Electron. 2005. 16. P. 633–643.
https://doi.org/10.1007/s10854-005-3738-6
 
4.    Tao H., Zhao X., Liu Q. Optical non-linearity in nano- and micro-crystallized glasses. J. Non-Cryst. Solids. 2013. 377. P. 146–150.
https://doi.org/10.1016/j.jnoncrysol.2013.02.001
 
5.    Ogusu K., Shinkawa K. Optical nonlinearities in As2Se3 chalcogenide glasses with Cu and Ag for pulse durations on the order of nanoseconds. Opt. Exp. 2009. 17. P. 8165–8172.
https://doi.org/10.1364/OE.17.008165
 
6.    Ganeev R.A., Ryasnyansky A.I. Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices. Appl. Phys. B. 2006. 84. P. 295–302.
https://doi.org/10.1007/s00340-006-2256-4
 
7.    Stepanov A.L. Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: A review. Rev. Adv. Mater. Sci. 2011. 27. P. 115–145.
 
8.    Anker J.N., Hall W.P., Lyandres O., Chan N.C., Zhao J., Van Duyne R.P. Biosensing with plasmonic nanosensors. Nature Materials. 2006. 7. P. 442–453.
https://doi.org/10.1038/nmat2162
 
9.    Feltz A. Amorphous Inorganic Materials and Glasses. VCH Publ., New York, 1993.
 
10. Liu Q., Zhao X. Non-linear optical properties of chalcogenide and chalcohalide glasses. J. Non-Cryst. Solids. 2010. 356. P. 2375–2377.
https://doi.org/10.1016/j.jnoncrysol.2010.03.030
 
11.    Grabiec M., Wolak A., Veron O., Blondeau J.-P., Pellerin N., Allix M., Pellerin S., Dzierzega K. Laser-driven precipitation of silver nanoparticles in soda lime glass matrix monitored by on-line extinction measurements. Plasmonics. 2012. 7. P. 279–286.
https://doi.org/10.1007/s11468-011-9304-6
 
12. Podsvirov O.A., Sidorov A.I., Tsekhomskii V.A., Vostokov A.V. Formation of copper nanocrystals in photochromic glasses under electron irradiation and heat treatment. Phys. Solid State. 2010. 52. P. 1906–1909.
https://doi.org/10.1134/S1063783410090192
 
13.    Rycenga M., Cobley C.M., Zeng J., Li W., Moran C.H., Zhang Q., Qin D., Xia Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011. 111. P. 3669–3712.
https://doi.org/10.1021/cr100275d
 
14.    Zeng H., Zhao C., Qiu J., Yang Y., Chen G. Preparation and optical properties of silver nanoparticles induced by a femtosecond laser irradiation. J. Non-Cryst. Solids. 2007. 300. P. 519–522.
https://doi.org/10.1016/j.jcrysgro.2006.11.308
 
15.    Ganeev R.A., Ryasnyansky A.I., Stepanov A.L., Usmanov T. Saturated absorption and reverse saturated absorption of Cu:SiO2 at  = 532 nm. phys. status solidi (b). 2004. 241. P. R1–R4.
 
16.    Charnovych S., Kokenyesi S., Glodán Gy., Csik A. Enhancement of photoinduced transformations in amorphous chalcogenide film via surface plasmon resonances. Thin Solid Films. 2011. 519. P. 4309–4312.
https://doi.org/10.1016/j.tsf.2011.02.023
 
17.    Charnovych S., Dmitruk N., Voynarovych I., Yurkovich N., Kokenyesi S. Plasmon-assisted transformations in metal-amorphous chalcogenide light-sensitive nanostructures. Plasmonics. 2012. 7. P. 341–345.
https://doi.org/10.1007/s11468-011-9312-6
 
18.    Charnovych S., Dmitruk N., Yurkovich N., Shiplyak M., Kokenyesi S. Photo-induced changes in a-As2S3/gold nanoparticle composite layer structures. Thin Solid Films. 2013. 548. P. 419–424.
https://doi.org/10.1016/j.tsf.2013.09.021
 
19.    Burunkova J., Csarnovics I., Denisyuk I., Daroczi L., Kokenyesi S. Enhancement of laser recording in gold/amorphous chalcogenide and gold/acrylate nanocomposite layers. J. Non-Cryst. Solids. 2014. 402. P. 200–203.
https://doi.org/10.1016/j.jnoncrysol.2014.03.019
 
20.    Stepanov A.L. Peculiarities of synthesis of metal nanoparticles in dielectrics by ion implantation method. Vestnik Nizhegorod. Univ.: Ser. Fizika Tverd. Tela. 2003. 1. P. 82–88 (in Russian).
 
21.    Nasu H., Kubodera K., Kobayashi M., Nakamura M., Kamiya K. Third-harmonic generation from some chalcogenide glasses. J. Amer. Ceram. Soc. 1990. 73, P. 1794–1796.
https://doi.org/10.1111/j.1151-2916.1990.tb09838.x
 
22.    Bicerano J., Ovshinsky S.R. Chemical bond approach to the structures of chalcogenide glasses with reversible switching properties. J. Non-Cryst. Solids. 1985. 74. P. 75–84.
https://doi.org/10.1016/0022-3093(85)90402-8
 
23.    Tichy L., Ticha H. Covalent bond approach to the glass-transition temperature of chalcogenide glasses. J. Non-Cryst. Solids. 1995. 189. P. 141–146.
https://doi.org/10.1016/0022-3093(95)00202-2
 
24.    Kastner M. Compositional trends in the optical properties of amorphous lone-pair semiconductors. Phys. Rev. B. 1973. 7. P. 5237–5252.
https://doi.org/10.1103/PhysRevB.7.5237
 
25.    Phillips J.C. Ionicity of the chemical bond in crystals. Rev. Mod. Phys. 1970. 42. P. 317–356.
https://doi.org/10.1103/RevModPhys.42.317
 
26.    Stepanov A.L., Khaibullin I.B. Fabrication of metal nanoparticles in sapphire by low-energy ion implantation. Rev. Adv. Mater. Sci. 2005. 9. P. 109–129.
 
27.    Yang C.Y., Sayers D.E., Paesler M.A. X-ray-absorption spectroscopy studies of glassy As2S3. The role of rapid quenching. Phys. Rev. B. 1987. 36. P. 8122–8128.
https://doi.org/10.1103/PhysRevB.36.8122
 
28.    Kuznetsov S.L., Mikhailov M.D., Pecheritsyn I.M., Turkina E.Yu. Structural chemical processes at the synthesis of chalcogenide glasses. J. Non-Cryst. Solids. 1997. 213-214. P. 68–71.
https://doi.org/10.1016/S0022-3093(97)00093-8
 
29. Mamedov S., Kisliuk A., Quitmann D. Effect of preparation conditions on the low frequency Raman spectrum of glassy As2S3. J. Mater. Sci. 1998. 33. P. 41–43.
https://doi.org/10.1023/A:1004377125553
 
30.    Shpotyuk O., Kozyukhin S., Shpotyuk Ya., Demchenko P., Mitsa V., Veres M. Coordination disordering in near-stoichiometric arsenic sulfide glass. J. Non-Cryst. Solids. 2014. 402. P. 236–243.
https://doi.org/10.1016/j.jnoncrysol.2014.06.013
 
31.    Musgraves J.D., Richardson K., Jain H. Laser-induced structural modification, its mechanisms, and applications in glassy optical materials. Opt. Meter. Exp. 2011. 1. P. 921–935.
 
32.    Borisova Z.U., Bychkov E.A., Tverianovich Yu.S. Interaction of Metals with Chalcogenide Glasses. Leningrad State University Publ., 1991 (in Russian).
 
33.    Shpotyuk O., Shpotyuk M., Cebulski J. On the energetic criterion for destructive clustering of metallic nanoparticles in chalcogenide and oxide glassy matrices. phys. status solidi (b). 2016. 253. P. 494–498.
 
34.    Shpotyuk M.V., Shpotyuk O.I., Cebulski J., Kozyukhin S. Destructive clustering of metal nanoparticles in chalcogenide and oxide glassy matrices. Nanoscale Res. Lett. 2016. 11. P. 34-1–34-6.
 
35.    Luo Y.-R. Comprehensive Handbook of Chemical Bond Energies. Taylor & Francis Group, CRC Press: Boca Raton, 2007.
https://doi.org/10.1201/9781420007282
 
36.    Shpotyuk M., Shpotyuk O., Golovchak R., Demchenko P. FSDP-related correlations in γ-irradiated chalcogenide semiconductor glasses: The case of glassy arsenic trisulphide g-As2S3 revised. J. Phys. Chem. Solids. 2013. 74. P. 1721–1725.
https://doi.org/10.1016/j.jpcs.2013.06.016
 
37.    Shpotyuk M., Shpotyuk O., Serkiz R., Demchenko P., Kozyukhin S. Surface oxidation in glassy arsenic trisulphide induced by high-energy γ-irradiation. Rad. Phys. Chem. 2014. 97. P. 341–345.
https://doi.org/10.1016/j.radphyschem.2013.12.021
 
38.    Lovas G., Mitsa V., Holomb R., Rosola I., Borkach E. The room temperature visible photo-luminescence in g-As2S3 and Ge-based glasses. Sci. Bull. Uzhgorod Univ. Ser. Fiz. 2013. 34. P. 54–58.
 
39.    Kostishin M.T., Michailovskaya E.V., Romanenko P.F. On the effect of photographic sensitivity of thin semiconductor layers on the metal substrate. Sov. Phys. Solid State. 1966. 8. P. 571–576.
 
40.    Elliott S.R. Photodissolution of metals in chalcogenide glasses: a unified mechanism. J. Non-Cryst. Solids. 1991. 137–138. P. 1031–1034.
https://doi.org/10.1016/S0022-3093(05)80297-2
 
41.    Stronski A.V., Vlcek M., Stetsun A.I., Sklenar A., Shepeliavyj P.E. Raman spectra of Ag- and Cu-photodoped chalcogenide films. Semiconductor Physics, Quantum Electronics and Optoelectronics. 1990. 2. P. 63–68.
 
42.    Liu Q., He X., Zhao X., Ren F., Xiao X., Jiang C., Zhou H., Zhao X., Lu L., Qian S. Third-order nonlinearity in Ag-nanoparticles embedded 56GeS2-24Ga2S3-20KBr chalcohalide glass. J. Non-Cryst. Solids. 2011. 357. P. 2320–2323.
https://doi.org/10.1016/j.jnoncrysol.2011.02.050
 
43.    Liu Q., He X., Zhao X., Ren F., Xiao X., Jiang C., Zhou X., Lu L., Zhou H., Qian S., Poumellec B., Lancry M. Enhancement of third-order nonlinearity in Ag-nanoparticles-contained chalcohalide glass. J. Nanopart. Res. 2011. 13. P. 3693–3697.
https://doi.org/10.1007/s11051-011-0290-6
 
44.    Song M., Liu Q.M., Xu Gai G., Ren F. Enhancement of third-order optical nonlinearities in 72GeS2-18Ga2S3-10CdS glasses by ion implantation. Chalcogenide Lett. 2015. 12. P. 453–460.
 
45. Shpotyuk O., Golovchak R., Kozdras A. Physical ageing of chalcogenide glasses, in: Chalcogenide Glasses: Preparation, Properties and Applications, Eds. J.-L. Adam, X. Zhang. Woodhead Publishing series in electronic and optical materials. Oxford: Woodhead Publishing, 2014. P. 209–264.
https://doi.org/10.1533/9780857093561.1.209
 
46.    Kavetskyy T.S., Valeev V.F., Nuzhdin V.I., Tsmots V.M., Stepanov A.L. Optical properties of chalcogenide glasses with ion-synthesized copper nanoparticles. Techn. Phys. Lett. 2013. 39. P. 1–4.
https://doi.org/10.1134/S106378501301015X
 
47.    Kavetskyy T., Stepanov A.L., Bazarov V.V., Tsmots V., Ren J., Chen G., Zhao X. Comparative study of optical properties of polarizing oxide glasses with silver nanorods and chalcogenide glasses with copper nanoparticles. Phys. Procedia. 2013. 48. P. 191–195.
https://doi.org/10.1016/j.phpro.2013.07.031
 
48.    Kavetskyy T.S., Stepanov A.L. Effects of gamma-irradiation and ion implantation in chalcogenide glasses. Chapter 14, in: Glass Nanocomposites: Synthesis, Properties and Applications. Eds. B. Karmakar, K. Rademann, A.L. Stepanov. Elsevier Acad. Press, 2016. P. 341–358.
https://doi.org/10.1016/B978-0-323-39309-6.00014-6
 
49.    Blonskyy I.V. Femtooptics of films and nanoparticles of noble metals. Ukr. J. Phys. Repts. 2009. 5. P. 170–202.
 
50.    Almeida J.M.P., da Silva D.S., Kassab L.R.P., Zilio S.C., Mendonça C.R., De Boni L. Ultrafast third-order optical nonlinearities of heavy metal oxide glasses containing gold nanoparticles. Opt. Mater. 2014. 36. P. 829–832.
https://doi.org/10.1016/j.optmat.2013.12.012
 
51.    Almeida J.M.P., Almeida G.F.B., Boni L., Mendonça C.R. Nonlinear optical properties and femtosecond laser micromachining of special glasses. J. Braz. Chem. Soc. 2015. 26. P. 2418–2429.
https://doi.org/10.5935/0103-5053.20150238
 
52.    Golovchak R., Shpotyuk O., McCloy J.S., Riley B.J., Windisch C.F., Sundaram S.K., Kovalskiy A., Jain H. Structural model of homogeneous As-S glasses derived from Raman spectroscopy and high-resolution XPS. Phil. Mag. 2010. 90. P. 4489–4501.
https://doi.org/10.1080/14786435.2010.510455
 
53.    Born M., Wolf E. Principles of Optics. Cambridge Univ. Press, Cambridge, 1999.
https://doi.org/10.1017/CBO9781139644181