Semiconductor Physics, Quantum Electronics and Optoelectronics, 20 (1) P. 034-040 (2017).
DOI: https://doi.org/10.15407/spqeo20.01.034


References

1.    Sachenko A.V., Kostylyov V.P., Vlasiuk V.M., Sokolovskyi I.O., and Evstigneev M.A. The influence of the exciton non-radiative recombi-nation in silicon on the photoconversion efficiency. 1. The case of a long Shockley–Read–Hall lifetime. SemiconductorPhysics, Quantum Electronics and Optoelectronics. 2016. 19, No. 4. P. 334–342.
https://doi.org/10.15407/spqeo19.04.334
 
2.    Richter A., Glunz S.W., Werner F., Schmidt J., Cuevas A. Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B. 2012. 86. P. 165202.
https://doi.org/10.1103/PhysRevB.86.165202
 
3.    Pikus G.E. Fundamentals of The Theory of Semiconductor Devices. Moscow: Nauka, 1965.
 
4.    Hguyen H.T., Rougieux F.E., Mitchell B., Macdonald D. Temperature dependence of the band-band absorption coefficient in crystalline silicon from photoluminescence. J. Appl. Phys. 2014. 115. P. 043710.
https://doi.org/10.1063/1.4862912
 
5.    Green M.A. Intrinsic concentration, effective densities of states, and effective mass in silicon. J. Appl. Phys. 1990. 67, No. 6. P. 2944–2954.
https://doi.org/10.1063/1.345414
 
6.    Abakumov V.N., Perel V.I., Yassievich I.N. Radiationless Recombination in Semiconductors. St. Petersburg: B.P. Konstantinov St. Petersburg Institute of Nuclear Physics of RAN, 1997 (in Russian).
 
7.    Fahrenbruch A.L., Bube R.H., Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion. New York: Academic, 1983.
 
8.    Skoplaki E., Palyvos J.A. On the temperature dependence of photovoltaic module electrical per-formance: A review of efficiency power corre-lation. Solar Energy. 2009. 83, No. 5. P. 614–624
https://doi.org/10.1016/j.solener.2008.10.008