Semiconductor Physics, Quantum Electronics and Optoelectronics, 20 (1) P. 041-047 (2017).
DOI: https://doi.org/10.15407/spqeo20.01.041


References

1.    Surface-enhanced Raman Scattering Physics and Applications, Eds. K. Kneipp, M. Moskovits, H. Kneipp. Topics in Appl. Phys., Springer-Verlag. 2006. 103. 464 p.
 
2.    Moskovits M. Surface-Enhanced spectroscopy. Rev. Mod. Phys. 1985. 57, No. 3. P. 783–826.
https://doi.org/10.1103/RevModPhys.57.783
 
3.    Cialla D., März A., Böhme R., Theil F., Weber K., Schmitt M., Popp J. Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal. Bioanal. Chem. 2012. 403, No. 1. P. 27–54.
https://doi.org/10.1007/s00216-011-5631-x
 
4.    Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects. Eds. E.C. Le Ru and P.G. Etchegoin. Elsevier, Oxford, UK, 2009. 688 p.
 
5.    Quester K., Avalos-Borja M., Vilchis-Nestor A.R., Camacho-Lopez M.A., Castro-Longoria E. SERS properties of different sized and shaped gold nanoparticles biosynthesized under different environmental conditions by neurospora crassa extrac. PLoS One. 2013. 8, No. 10. P. e77486.
https://doi.org/10.1371/journal.pone.0077486
 
6.    Chursanova M.V., Germash L.P., Yukhymchuk V.O., Dzhagan V.M., Khodasevich I.A., Cojoc D. Optimization of porous silicon preparation technology for SERS applications. App. Surf. Sci. 2010. 256, No. 11. P. 3369–3373.
https://doi.org/10.1016/j.apsusc.2009.12.036
 
7.    Sharma B., Frontiera R.R., Henry A.-I., Ringe E., and Van Duyne R.P. SERS: materials, applications, and the future. Materials Today. 2012. 15, No. 1-2. P. 16–25.
https://doi.org/10.1016/S1369-7021(12)70017-2
 
8.    Liu T.-Y., Tsai K.-T., Wang H.-H. et al. Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nature Commun. 2011. 2(538).
https://doi.org/10.1038/ncomms1546
 
9.    Tsen M., Sun L. Surface-enhanced Raman scattering from functionalized self-assembled monolayers. Part 1. Distance dependence of enhanced Raman scattering from a terminal phenyl group. Anal. Chim. Acta. 1995. 307, No. 2-3. P. 333–340.
https://doi.org/10.1016/0003-2670(94)00594-C
 
10.    Yukhymchuk V.O., Hreshchuk O.M., Valakh M.Ya., Skoryk M.A., Efanov V.S., Matveevskaya N.A. Efficient core-SiO2/shell-Au nanostructures for surface enhanced Raman scattering. SPQEO. 2014. 1, No. 3. P. 217–221.
 
11.    Zhang W.C., Wu X.L., Kan C.X., Pan F.M., Chen H.T., Zhu J., Chu P.K. Surface-enhanced Raman scattering from silver nanostructures with different morphologies. Appl. Phys. A. 2010. 100, No. 1. P. 83–88.
https://doi.org/10.1007/s00339-010-5583-6
 
12.    He S., Kang M.W.Ch., Khan F.J., Tan E.K.M., Reyes M.A., Kah J.C.Y., Optimizing gold nanostars as a colloid-based surface-enhanced Raman scattering (SERS) substrate. J. Opt. 2015. 17, No. 11. P. 114013.
https://doi.org/10.1088/2040-8978/17/11/114013
 
13.    Fang Y., Seong N.-H., Dlott D.D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science. 2008. 321(5887). P. 388-392.
https://doi.org/10.1126/science.1159499
 
14.    Vendrell M., Maiti K.K., Dhaliwal K., Chang Y.-T. Surface-enhanced Raman scattering in cancer detection and imaging. Trends in Biotech. 2013. 31, No. 4. P. 249–257.
https://doi.org/10.1016/j.tibtech.2013.01.013
 
15.    Qian X., Peng X.-H., Ansari D.O., Yin-Goen Q., Chen G.Z., Shin D.M., Yang L., Young A.N., Wang M.D. & Nie S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature biotech. 2008. 26, NO. 1. P. 83–90.
https://doi.org/10.1038/nbt1377
 
16.    Canonico-May S.A., Beavers K.R., Melvin M.J., Alkilany A.M., Duvall C.L., Stone J.W., High conversion of HAuCl4 into gold nanorods: A re-seeding approach. J. Col. and Interface Sci. 2016. 463. P. 229–232.
https://doi.org/10.1016/j.jcis.2015.10.053
 
17.    Ndokoye P., Li X., Zhao Q., Li T., Tade M.O., Liu S. Gold nanostars: Benzyldimethylammonium chlori-de-assisted synthesis, plasmon tuning, SERS and catalytic activity. J. Col. and Interface Sci. 2016. 462. P. 341–350.
https://doi.org/10.1016/j.jcis.2015.10.007
 
18.    Zhicheng L., Zhaodong Y., Lu B. Layer-by-layer assembly of polyelectrolyte and gold nanoparticle for highly reproducible and stable SERS substrate. Appl. Surf. Sci. 2016. 360(part B). P. 437–441.
 
19.    Richardson J.J., Björnmalm M., Caruso F. Technology-driven layer-by-layer assembly of nanofilms. Science. 2015. 348(6233). P. 411–423.
https://doi.org/10.1126/science.aaa2491
 
20.    Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Eds. D. Briggs, M.P. Seach. John Wiley & Sons Ltd., NY, 1983. 600 p.
 
21.    Le Ru E.C., Blackie E., Meyer M., Etchegoin P.G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C. 2007. 111. P. 13794–13803.
https://doi.org/10.1021/jp0687908
 
22.    Hildebrandt P. and Stockburger M. Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 1984. 88. P. 5935–5944.
https://doi.org/10.1021/j150668a038