Semiconductor Physics, Quantum Electronics and Optoelectronics, 20 (1) P. 048-054 (2017).
DOI: https://doi.org/10.15407/spqeo20.01.048


References

1.    Emmony D.C., Howson R.P., and Willis L.J. Laser mirror damage in germanium at 10.6 μm. Appl. Phys. Lett. 1973. 23, No. 11. P. 598–600.
https://doi.org/10.1063/1.1654761
 
2.    Makin V.S., Makin R.S., Vorobyov A.Y., Guo Ch. Dissipative nanostructures and Feigenbaum's universality in the 'Metal-high-power ultrashort-pulsed polarized radiation' non-equilibrium nonlinear dynamical system. Tech. Phys. Lett. 2008. 34, No. 5. P. 387–390.
https://doi.org/10.1134/S1063785008050088
 
3.    Golosov E.V., Emel'yanov V.E., Ionin A.A. et al. Femtosecond laser writing of subwave one-dimensional quasi-periodic nanostructures on a titanium surface. JETP Lett. 2009. 90, No. 2. P. 107–110.
https://doi.org/10.1134/S0021364009140057
 
4.    Korol'kov V.P., Ionin A.A., Kudryashov S.I. et al. Surface nanostructuring of Ni/Cu foils by femtosecond laser pulses. Quantum Electronics. 2011. 41, No. 4. P. 387–392.
https://doi.org/10.1070/QE2011v041n04ABEH014464
 
5.    Vorobyev A.Y., Guo C. Femtosecond laser nano-structuring of metals. Opt. Exp. 2006. 14, No. 6. P. 2164–2169.
https://doi.org/10.1364/OE.14.002164
 
6.    Vorobyev A.Y., Guo C. Multifunctional surfaces produced by femtosecond laser pulses. J. Appl. Phys. 2015. 117. P. 033103.
https://doi.org/10.1063/1.4905616
 
7.    Groenendijk M. and Meijer J. Microstructuring using femtosecond pulsed laser ablation. J. Laser Appl. 2006. 18. P. 227–235.
https://doi.org/10.2351/1.2227020
 
8.    Vorobyev A.Y., Guo C. Femtosecond laser structuring of titanium implants. Appl. Surf. Sci. 2007. 253. P. 7272–7280.
https://doi.org/10.1016/j.apsusc.2007.03.006
 
9.    Vovdenko S., Dmitruk I., Berezovska N. et al. Laser-induced quasi-periodic metal structures for efficient excitation of surface plasmons. Ukr. J. Phys. 2016. 61, No. 9. P. 780–783.
https://doi.org/10.15407/ujpe61.09.0780
 
10.    Emel'yanov V.I., Seval'nev D.M. Three-wave interactions of surface defect-deformation waves and their manifestations in the self-organisation of nano- and microstructures in solids exposed to laser radiation. Quantum Electronics. 2009. 39, No. 7. P. 678–684.
https://doi.org/10.1070/QE2009v039n07ABEH014118
 
11.    Bazhenov V.V., Bonch-Bruevich A.M., Libenson M.N., and Makin V.S. Interference of surface electromagnetic waves in connection with periodic structures formed during intense illumination of a semiconductor surface. Sov. Tech. Phys. Lett. 1984. 10, P. 642–645 (in Russian).
 
12.    Bonch-Bruevich A.M., Libenson M.N., Kochengina M.K., Makin V.S., Pudkov S.D., and Trubaev V.V. Surface electromagnetic and waveguide modes excitation during the intense laser illumination and their influence on the character of condense media breakdown. Izvestiya Akademii Nauk SSSR, Ser. Fiz. 1982. 46, No. 6. P. 1186–1195 (in Russian).
 
13.    Öktem B., Pavlov I., Ilday S., Kalaycioglu H., Rybak A., Yavas S., Erdogan M. and Ilday F.Ö. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nature Photonics. 2013. 7, No. 11. P. 897–901.
https://doi.org/10.1038/nphoton.2013.272
 
14.    Makin V.S., Pestov Yu.I., and Privalov V.E. Controllable grain-boundary displacement during recrystallization and the microrelief of a titanium surface induced by laser radiation pulses. J. Opt. Technol. 2013. 80, No. 2. P. 91–95.
https://doi.org/10.1364/JOT.80.000091