Semiconductor Physics, Quantum Electronics and Optoelectronics, 20 (1) P. 055-063 (2017).
References 1. Shriram R. Thin Film Metal-Oxides; Fundamentals and Applications in Electronics and Energy. Springer, 2010. 2. Markus N. and Nicola P. Metal Oxide Nanoparticles in Organic Solvents; Synthesis, Formation, Assembly and Application, Engineering Materials and Processes. Springer, 2009. 3. Willander M., Zhao Q.X., Hu Q.-H., Klason P., Kuzmin V., Al-Hilli S.M., Nur O., Lozovik Y.E. Fundamentals and properties of zinc oxide nanostructures: Optical and sensing applications. Superlatt. Microstruct. 2008. 43. P. 352361. https://doi.org/10.1016/j.spmi.2007.12.021 4. Szyszka B., Dewald W., Gurram S.K., Pflug A., Schulz C., Siemers M., Sittinger V., Ulrich S. Recent developments in the field of transparent conductive oxide films for spectral selective coatings, electronics and photovoltaics. Current Appl. Phys. 2012. 12. P. S2S11. https://doi.org/10.1016/j.cap.2012.07.022 5. Ginley D.S. Applications of Transparent Conductors to Solar Energy and Energy Efficiency. Handbook of Transparent Conductors. Springer, 2011. P. 353423. 6. Liu H., Avrutin V., Izyumskaya N., Özgür Ü., Morkoç H. Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlatt. Microstruct. 2010. 48. P. 458484. https://doi.org/10.1016/j.spmi.2010.08.011 7. Kwak D.J., Moon B.H., Lee D.K., Park C.S. and Sung Y.M. Comparison of transparent conductive indium tin oxide, titanium-doped indium oxide, and fluorine-doped tin oxide films for dye-sensitized solar cell application. J. Electr. Eng. and Technol. 2011. 6. P. 684687. https://doi.org/10.5370/JEET.2011.6.5.684 8. Liu C.Y., Xu H.Y., Sun Y., Zhang C., Ma J.G., Liu Y.C. Ultraviolet electroluminescence from Au/MgO/MgxZn1−xO heterojunction diodes and the observation of Zn-rich cluster emission. J. Lumin. 2014. 148. P. 116120. https://doi.org/10.1016/j.jlumin.2013.12.005 9. Schoenfeld W.V., Wei M., Boutwell R.C., Liu H. High response solar-blind MgZnO photodetectors grown by molecular beam epitaxy. Proc. SPIE. 2014. 8987. Oxide-based Materials and Devices V, 89871P (12 p.). 10. Ivetićan T.B., Dimitrievskaa M.R., Finčurb N.L., Đačanina Lj.R., Gútha I.O., Abramovićb B.F., Lukić-Petrovića S.R. Effect of annealing temperature on structural and optical properties of Mg-doped ZnO nanoparticles and their photocatalytic efficiency in alprazolam degradation. Ceramics Intern. 2014. 40. P. 15451552. https://doi.org/10.1016/j.ceramint.2013.07.041 11. Zhou Z., Shang F., Pan G., Wang F., Liu C., Gong W., Zi Z., Wei Y., Lu J., Chen X. Enhanced photocatalytic activity of Mg0.05Zn0.95O thin films prepared by solgel method through a cycle. J. Mater. Sci.: Mater. Electron. 2014. 25. P. 20532059. https://doi.org/10.1007/s10854-014-1839-9 12. Shang C., Thimont Y., Barnabé A., Presmanes L., Pasquet I., Tailhades P. Detailed microstructure analysis of as-deposited and etched porous ZnO films. Appl. Surf. Sci. 2015. 344. P. 242248. https://doi.org/10.1016/j.apsusc.2015.03.097 13. Sharma M., Jeevanandam P. Magnesium doping in hierarchical ZnO nanostructures and studies on optical properties. Superlatt. Microstruct. 2012. 52. P. 10831092. https://doi.org/10.1016/j.spmi.2012.08.008 14. Hsueh K.P., Cheng Y.C., Lin W.Y., Chiu H.C., Huang Y.P., Chi G.C., Liu W.S. Physical properties of Al-doped MgZnO film grown by RF magnetron sputtering using ZnO/MgO/Al2O3 target. Thin Film Solar Technology III, 81100X, doi:10.1117/12.891269 (2011). https://doi.org/10.1117/12.891269 15. Karthick K., Vijayalakshmi K. Influence of Mg doping on the properties of ZnO films prepared on c-cut sapphire by sputtering. Superlatt. Microstruct. 2014. 67. P. 172180. https://doi.org/10.1016/j.spmi.2014.01.007 16. Sengupta J., Ahmed A., Labar R. Structural and optical properties of post annealed Mg doped ZnO thin films deposited by the sol-gel method. Mater. Lett. 2013. 109. P. 265268. https://doi.org/10.1016/j.matlet.2013.07.104 17. Vijayalakshmi K., Renitta A., Karthick K. Growth of high quality ZnO:Mg films on ITO coated glass substrates for enhanced H2 sensing. Ceramics Intern. 2014. 40. P. 61716177. https://doi.org/10.1016/j.ceramint.2013.11.070 18. Yoshino K., Oyama S., Yoneta M. Structural, optical and electrical characterization of undoped ZnMgO film grown by spray pyrolysis method. J. Mater. Sci.: Mater. Electron. 2008. 19. P. 203209. https://doi.org/10.1007/s10854-007-9333-2 19. Hoggas K., Nouveau C., Djelloul A., Bououdina M. Structural, microstructural, and optical properties of Zn1-xMgxO thin films grown onto glass substrate by ultrasonic spray pyrolysis. Appl. Phys. A. 2015. 120. P. 745755. https://doi.org/10.1007/s00339-015-9252-7 20. Tsay C.Y., Wang M.C., and Chiang S.C. Effects of Mg additions on microstructure and optical properties of Sol-Gel derived ZnO thin films. Mater. Trans. 2008. 49. P. 11861191. https://doi.org/10.2320/matertrans.MER2007334 21. Choopun S., Vispute R.D., Yang W., Sharma R.P., Venkatesan T. and Shen H. Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1−xO alloy films. Appl. Phys. Lett. 2002. 80. P. 15291531.Maemoto T., Ichiba N., Ishii H., Sasa S., Inoue M. Structural and optical properties of ZnMgO thin films grown by pulsed laser deposition using ZnO-MgO multiple targets. J. Phys.: Conf. Series. 2007. 59. P. 670673. 24. Mallika A.N., Reddy A. Ramachandra, Babu K. Sowri, Sujatha C., Reddy K. Venugopal Structural and photoluminescence properties of Mg substituted ZnO nanoparticles. Opt. Mater. 2014. 36. P. 879884. https://doi.org/10.1016/j.optmat.2013.12.015 25. Cheong Y.L., Yam F.K., Chn I.K., Hassan Z. X-ray analysis of nanoporous TiO2 synthesized by electrochemical anodization, Superlatt. Microstruct. 2013. 64. P. 3743. https://doi.org/10.1016/j.spmi.2013.09.016 26. Reyes-Rojasa A., Esparza-Poncea H., De la Torreb S.D., Torres-Moyea E. Compressive strain-dependent bending strength property of Al2O3ZrO2, (1.5 mol% Y2O3) composites performance by HIP. Mater. Chem. Phys. 2009. 114. P. 756762. https://doi.org/10.1016/j.matchemphys.2008.10.044 27. Mahdjoub A., Moualkia H., Remache L., Hafid A. Analyse des spectres de transmittance des couches minces par une modélisation mathématique appropriée. Rev. Alg. Phys. 2015. 2. P. 3037. 28. Ü. Özgür, I. Alivov Ya, C. Liu, A. Teke, M. A Reshchikov, S. Doǧan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005. 98, P. 041301041301. https://doi.org/10.1063/1.1992666 29. Badar N., Chayed N.F., Rusdi R., Kamarudin N. and Kamarulzaman N. Band gap energies of magnesium oxide nanomaterials synthesized by the Sol-Gel method. Adv. Mater. Res. 2012. 545, P. 157160. https://doi.org/10.4028/www.scientific.net/AMR.545.157 30. Choi W.S., Yoon J.G. Optical characterization of band gap graded ZnMgO films. Solid State Communs. 2012. 152. P. 345348. https://doi.org/10.1016/j.ssc.2011.12.019 31. Benzitouni S., Mahdjoub A., Zaabat M. Spectroscopic ellipsometry characterization of thin films deposited on silicon substrate. J. New Technol. Mater. 2014. 04. P. 138142. https://doi.org/10.12816/0010318 32. Ropp R.C. Encyclopedia of the Alkaline Earth Compounds. Elsevier, 2013. P. 108. 33. Su S.C., Lu Y.M., Xing G.Z., Wu T. Spontaneous and stimulated emission of ZnO/Zn0.85Mg0.15O asymmetric double quantum wells. Superlatt. Microstruct. 2010. 48. P. 485490. https://doi.org/10.1016/j.spmi.2010.08.010 34. Jiang J., Wang J., Tang Y. Mesoporous F-doped ZnO prism arrays with significantly enhanced photovoltaic performance for dye-sensitized solar cells. J. Power Sources. 2011. 196. P. 1051810525. https://doi.org/10.1016/j.jpowsour.2011.08.011 35. Cui J., Sun J., Liu X., Li J., Ma X., Chen T. Fabrication of hierarchical flower-like porous ZnO nanostructures from layered ZnC2O43Zn(OH)2 and gas sensing properties. Appl. Surf. Sci. 2014. 308. P. 1723. https://doi.org/10.1016/j.apsusc.2014.03.155 36. Chen Y., Zhang L., Ning L., Zhang C., Zhao H., Liu B., Yang H. Superior photocatalytic activity of porous wurtzite ZnO nanosheets with exposed {001} facets and a charge separation model between polar (001) and () surfaces. Chem. Eng. J. 2015. 264. P. 557564. https://doi.org/10.1016/j.cej.2014.11.054 |