Semiconductor Physics, Quantum Electronics and Optoelectronics, 20 (1) P. 069-073 (2017).


1.    Ovshinsky S.R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 1968. 21. P. 1450.
2.    Wuttig M. Phase change materials: Towards a universal memory? Nat. Mater. 2008. 4. P. 265266.
3.    Pauling L. The Nature of the Chemical Bond, 3-rd ed. Cornell University Press, 1970.
4.    Krebs H. Der Einfluß homöopolarer Bindungsanteile auf die Struktur anorganischer Salze. III Verbindungen der Halbmetalle. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für Phys. Chemie. 1957. 61. P. 925934.
5.    Lucovsky G. and White R.M. Effects of resonance bonding on the properties of crystalline and amorphous semiconductors. Phys. Rev. B. 1973. 8, No. 2. P. 660667.
6.    Littlewood P.B. The crystal structure of IV-VI compounds. I. Classification and description. J. Phys. C Solid State Phys. 1980. 13. P. 4855.
7.    Shportko K., Kremers S., Woda M., Lencer D., Robertson J., and Wuttig M. Resonant bonding in crystalline phase-change materials. Nat. Mater. 2008. 7, No. 8. P. 653658.
8.    Zalden P. et al. Specific heat of (GeTe)x (Sb2Te3)1-x phase-change materials: The impact of disorder and anharmonicity. Chem. Mater. 2014. 26, No. 7. P. 2307.
9.    Siegrist M., Jost T., Volker P., Woda H., Merkelbach M., Schlockermann P., Wuttig C. Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 2011. 10. P. 202208.
10.    Kim P.M., Garland C.C., Abad J.W., Raccah H. Modeling the optical dielectric function of semiconductors: Extension of the critical-point parabolic-band approximation. Phys. Rev. B. 1992. 45, No. 20. P. 1174911767.
11.    Jellison G.E., Jr. Spectroscopic ellipsometry data analysis: measured versus calculated quantities. Thin Solid Films. 1998. 313314. P. 3339.
12.    Shimakawa K., Střižik L., Wagner T., and Frumar M. Penn gap rule in phase-change memory materials: No clear evidence for resonance bonds. APL Mater. 2015. 3, No. 4. P. 41801.
13.    Van Dyke J.P. Matrix elements in interband optical transitions. Phys. Rev. B. 1972. 5, No. 4. P. 14891493.
14.    Bransden C.J., Joachain B.H. Quantum Mechanics, 2nd ed. Harlow: Pearson Education Limited, 1999.
15.    Wełnic W., Botti S., Reining L., and Wuttig M. Origin of the optical contrast in phase-change materials. Phys. Rev. Lett. 2007. 98, No. 23. P. 236403.
16.    Shportko K., Venger E. Influence of the local structure in phase-change materials on their dielectric permittivity. Nanoscale Res. Lett. 2015. 10, No. 33.
17.    Matsunaga T. et al. Phase-change materials: Vibrational softening upon crystallization and its impact on thermal properties. Adv. Funct. Mater. 2011. 21, No. 12. P. 22322239.
18.    Lencer D., Salinga M., Grabowski B., Hickel T., Neugebauer J., and Wuttig M. A map for phase-change materials. Nat. Mater. 2008. 7, No. 12. P. 972977.
19.    Brüesch P. Phonons: Theory and Experiments III. vol. 66. Berlin, Heidelberg: Springer, 1987.
20.    Giannozzi P., Baroni P. Vibrational and dielectric properties of C60 from density-functional perturbation theory. J. Chem. Phys. 1994. 100, No. 11. P. 85378539.
21.    Gonze X. and Lee C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B. 1997. 55, No. 16. P. 1035510368.
22.    Chen I. and Zallen R. Optical phonons and dynamic charge in trigonal Se and Te. Phys. Rev. 1968. 173, No. 3. P. 833843.