Semiconductor Physics, Quantum Electronics and Optoelectronics, 20 (1) P. 085-090 (2017).
DOI: https://doi.org/10.15407/spqeo20.01.085


References

1.    Ebbesen T.W., Lezec H.J., Ghaemi H.F., Thio T., Wolff P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature. 1998. 391(6668). P. 667–669.
https://doi.org/10.1038/35570
 
2.    Karabchevsky A., Krasnykov O., Abdulhalim I., Hadad B., Goldner A., Auslender M., Hava S. Metal grating on a substrate nanostructure for sensor applications. Photonics and Nanostructures – Fundamentals and Applications. 2009. 7, No. 4. P. 170–175.
 
3.    Lindquist N.C., Nagpal P., McPeak K.M., Norris D.J., Oh S.H. Engineering metallic nanostructures for plasmonics and nanophotonics. Repts. Progr. Phys. 2012. 75, No. 3. P. 036501.
https://doi.org/10.1088/0034-4885/75/3/036501
 
4.    De Ceglia D., Vincenti M.A., Scalora M., Akozbek N., Bloemer M. Plasmonic band edge effects on the transmission properties of metal grating. AIP Adv. 2011. 1. P. 032151-1–032151-15.
https://doi.org/10.1063/1.3638161
 
5.    Cao Q., Lalanne P. Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys. Rev. Lett. 2002. 88, No. 5. P. 057403.
https://doi.org/10.1103/PhysRevLett.88.057403
 
6.    Porto J.A., Garcia-Vidal F.J., Pendry J.B. Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett. 1999. 83, No. 14. P. 2845.
https://doi.org/10.1103/PhysRevLett.83.2845
 
7.    Treacy M.M.J. Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings. Phys. Rev. B. 2002. 66, No. 19. P. 195105.
https://doi.org/10.1103/PhysRevB.66.195105
 
8.    Barbara A., Quémerais P., Bustarret E., Lopez-Rios T. Optical transmission through subwavelength metallic gratings. Phys. Rev. B. 2002. 66, No. 16. P. 161403.
https://doi.org/10.1103/PhysRevB.66.161403
 
9.    Martin-Moreno L., Garcia-Vidal F.J., Lezec H.J., Pellerin K.M., Thio T., Pendry J.B., Ebbesen T.W. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 2001. 86, No. 6. P.1114.
https://doi.org/10.1103/PhysRevLett.86.1114
 
10.    Yao N., Pu M., Hu C., Lai Z.A., Zhao Z., Luo X. Dynamical modulating the directional excitation of surface plasmons sources. Optik – Intern. Journal for Light and Electron Optics. 2012. 123, No. 16. P. 1465–1468.
https://doi.org/10.1016/j.ijleo.2011.09.006
 
11.    Liu H., Lalanne P. Microscopic theory of the extraordinary optical transmission. Nature. 2008. 452(7188). P. 728–731.
https://doi.org/10.1038/nature06762
 
12.    Garcia-Vidal F.J., Martin-Moreno L., Ebbesen T.W., Kuipers L. Light passing through subwavelength apertures. Rev. Mod. Phys. 2010. 82, No. 1. P. 729.
https://doi.org/10.1103/RevModPhys.82.729
 
13.    Lezec H., Thio T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt. Exp. 2004. 12, No. 16. P. 3629–3651.
https://doi.org/10.1364/OPEX.12.003629
 
14.    Xie S., Li H., Fu S., Xu H., Zhou X., Liu Z. The extraordinary optical transmission through double-layer gold slit arrays. Opt. Communs. 2010. 283. P. 4017–4024.
https://doi.org/10.1016/j.optcom.2010.06.031
 
15.    Yaremchuk I.Y., Fitio V.M., and Bobitski Y.V. High transmission of light through metallic grating limited by dielectric layers. LFNM'2013. 2013. P. 74.
 
16.    Skigin D.C., Depine R.A., Resonances on metallic compound transmission gratings with subwavelength wires and slits. Opt. Communs. 2006. 262. P. 270–275.
https://doi.org/10.1016/j.optcom.2006.01.006
 
17.    Fitio V.M. Transmissions of Metallic Gratings with Narrow Slots. 2006 International Workshop on Laser and Fiber-Optical Networks Modeling, June 29 – July 1, 2006. P. 113–116.
https://doi.org/10.1109/lfnm.2006.251996
 
18.    Moreno E., Martín-Moreno L., García-Vidal F.J. Extraordinary optical transmission without plasmons: the s-polarization case. J. Opt. A: Pure and Appl. Opt. 2006. 8, No. 4. P. S94.
https://doi.org/10.1088/1464-4258/8/4/S07
 
19.    Moharam M.G., Gaylord T.K. Rigorous coupled-wave analysis of planar-grating diffraction. JOSA, 1981. 71, No. 7. P. 811–818.
https://doi.org/10.1364/JOSA.71.000811
 
20.    Moharam M.G., Gaylord T.K., Grann E.B., Pommet D.A. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. JOSA A. 1995. 12, No. 5. P. 1068–1076.
https://doi.org/10.1364/JOSAA.12.001068
 
21.    Benabbas A., Halte V., Bigot J. Analytical model of the optical response of periodically structured metallic films. Opt. Exp. 2005. 13. P. 8730–8745.
https://doi.org/10.1364/OPEX.13.008730
 
22.    Yaremchuk I., Tamulevičius T., Fitio V., Gražulevičiūte I., Bobitski Ya., Tamulevičius S. Numerical implementation of the S-matrix algorithm for modeling of relief diffraction gratings. J. Mod. Opt. 2013. 60. P. 1781–1788.
https://doi.org/10.1080/09500340.2013.861032