Semiconductor Physics, Quantum Electronics and Optoelectronics, 20 (1) P. 142-148 (2017).
DOI: https://doi.org/10.15407/spqeo20.01.142


References

1.    Tuchin V.V. Handbook of Coherent-Domain Optical Methods. Biomedical Diagnostics, Environmental and Material Science. Kluwer Academic Publishers, 2004.
 
2.    Cheong W.-F., Prahl S.A., Welch A.J. A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 1990. 26. P. 2166–2185.
https://doi.org/10.1109/3.64354
 
3.    Mishchenko M.I., Travis L.D., Lacis A.A. Scattering, Absorption and Emission of Light by Small Particles. Cambridge University Press, 2002.
 
4.    Cowin S.C. How is a tissue built? J. Biomech. Eng. 2000. 122. P. 553–568.
https://doi.org/10.1115/1.1324665
 
5.    de Boer J.F., Milner T.E., van Gemert M.J., Nelson J.S. Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography. Proc. SPIE. 1998. 3196. P. 32–37.
https://doi.org/10.1117/12.297943
 
6.    Everett M.J., Shoenenberger K., Colston B.W., Da Silva L.B. Birefringence characterization of biological tissue by use of optical coherence tomography. Opt. Lett. 1998. 23. P. 228–230.
https://doi.org/10.1364/OL.23.000228
 
7.    de Boer J.F., Milner T.E., Nelson J.S. Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography. Opt. Lett. 1999. 24. P. 300–302.
https://doi.org/10.1364/OL.24.000300
 
8.    Angelsky O.V., Bekshaev A.Ya., Maksimyak P.P., Maksimyak A.P., Hanson S.G., Zenkova C.Yu. Self-diffraction of continuous laser radiation in a disperse medium with absorbing particles. Opt. Exp. 2013. 21, No. 7. P. 8922–8938.
https://doi.org/10.1364/OE.21.008922
 
9.    Angelsky O.V., Bekshaev A.Ya., Maksimyak P.P., Maksimyak A.P., Hanson S.G. Measurement of small light absorption in microparticles by means of optically induced rotation. Opt. Exp. 2015. 23, No. 6. P. 7152–7163.
https://doi.org/10.1364/OE.23.007152
 
10.    Angelsky O.V., Besaha R.N., Mokhun A.I., Mokhun I.I., Sopin M.O., Soskin M.S., Vasnetsov M.V. Singularities in vectoral fields. Proc. SPIE. 1999. 3904. P. 40.
https://doi.org/10.1117/12.370443
 
11.    Ushenko Yu.O., Tomka Yu.Ya., Telenga O.I., Misevitch I.Z., Istratiy V.V. Complex degree of mutual anisotropy of biological liquid crystals nets. Opt. Eng. 2011. 50. P. 039001.
https://doi.org/10.1117/1.3558850
 
12.    Ushenko, A.G. Polarization correlometry of angular structure in the microrelief pattern of rough surfaces. Optics and Spectroscopy. 2002. 92. P. 227–229.
https://doi.org/10.1134/1.1454033
 
13.    Polyanskii V.K., Angelsky O.V., Polyanskii P.V. Scattering-induced spectral changes as a singular optical effect. Optica Applicata. 2002. 32, No. 4. P. 843–848.
 
14.    Ushenko V.A., Sidor M.I., Marchuk Y.F., Pashkovskaya N.V., Andreichuk D.R. Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues. Optics and Spectroscopy. 2014. 117, No. 1. P. 152–157.
https://doi.org/10.1134/S0030400X14070248
 
15.    Ushenko V.A., Zabolotna N.I., Pavlov S.V., Burcovets D.M., Novakovska O.Yu. Mueller-matrices polarization selection of two-dimensional linear and circular birefringence images. Proc. SPIE. 2013. 9066, Eleventh International Conference on Correlation Optics. P. 90661X.
https://doi.org/10.1117/12.2023604
 
16.    Ushenko V.A., Gorsky M.P. Complex degree of mutual anisotropy of linear birefringence and optical activity of biological tissues in diagnostics of prostate cancer. Optics and Spectroscopy. 2013. 115, No. 2. P. 290–297.
https://doi.org/10.1134/S0030400X13080171
 
17.    Ushenko Yu.A. Concerted spatial-frequency and polarization-phase filtering of laser images of polycrystalline networks of blood plasma smears. J. Biomed. Opt. 2012. 17, No. 11. P. 117005.
https://doi.org/10.1117/1.JBO.17.11.117005
 
18.    Ushenko Yu.O., Dubolazov O.V., Karachevtsev A.O., Gorsky M.P., Marchuk Y.F. Wavelet analysis of Fourier polarized images of the human bile. Appl. Opt. 2012. 51, No. 10. P. C133–C139.
https://doi.org/10.1364/AO.51.00C133
 
19.    Ushenko Yu.A., Ushenko V.A., Dubolazov A.V., Balanetskaya V.O., Zabolotna N.I. Mueller-matrix diagnostics of optical properties of polycrystalline networks of human blood plasma. Optics and Spectroscopy, 2012. 112, No. 6. P. 884–892.
https://doi.org/10.1134/S0030400X12050232
 
20.    Ushenko Yu.A., Tomka Yu.Ya., Dubolazov A.V. Laser diagnostics of anisotropy in birefringent networks of biological tissues in different physiological conditions. Quantum Electronics. 2011. 41, No. 2. P. 170–175.
https://doi.org/10.1070/QE2011v041n02ABEH014215
 
21.    Ushenko Yu.A., Dubolazov A.V., Balanetskaya V.O., Karachevtsev A.O., Ushenko V.A. Wavelet-analysis of polarization maps of human blood plasma. Optics and Spectroscopy. 2012. 113, No. 3. P. 332–343.
https://doi.org/10.1134/S0030400X12070260
 
22.    Joachim H., Feldmann U., Eine Quantitative Methode Der Todeszeitbestimmung Durch Untersuchung Der Galvanischen Reizschwelle (Rheobase) Am Skelettmuskel Von Leichen. Z. Rechtsmed. 1980. 85, No. 1. P. 5–22.
https://doi.org/10.1007/BF02099162
 
23.    Kuroda F., Hiraiwa K., Oshida S. et al., Estimation of postmortem interval from rectal temperature by use of computer (III)-thermal conductivity of the skin. Med. Sci. Law. 1982. 22, No. 4. P. 285–289.
 
24.    F. Brion, B. Marc, F. Launay, Postmortem interval estimation by creatinine levels in human psoas Muscle. Forensic Sci. Int. 1991. 52, No. 1. P. 113–120.
https://doi.org/10.1016/0379-0738(91)90103-P
 
25.    Tomita Y., Nihira M., Ohno Y. et al., Histological study of early postmortem changes in various organs: comparison of the paraffin embedding method and the epoxy resin embedding method. Nippon Hoigaku Zasshi. 1999. 53, No. 2. P. 207–217.
 
26.    Elmas I., Baslo M.B., Ertas M. et al., Compound muscle action potential analysis in different death models: Significance for the estimation of early postmortem interval. Forensic Sci. Int. 2002. 127, No. 1-2. P. 75–81.
https://doi.org/10.1016/S0379-0738(02)00112-3
 
27.    Munoz J.I., Suarez-Penaranda J.M., Otero X.L. et al., A new perspective in the estimation of postmortem interval (PMI) based on vitreous. J. Forensic Sci. 2001. 46, No. 2. P. 209–214.
https://doi.org/10.1520/JFS14950J
 
28.    Goodman J.W. Statistical properties of laser speckle patters. In: Laser Speckle and Related Phenomena, Ed. J.C. Dainty. Berlin, Springer-Verlag, 1975. P. 9–75.
 
29.    Karachevtsev A.O. Fourier Stokes-polarimetry of biological layers polycrystalline networks. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. 15, No. 3. P. 252–268.
https://doi.org/10.15407/spqeo15.03.252
 
30.    Gerrard A., Burch J.M. Introduction to Matrix Methods in Optics. A Wiley-Intersci. Publ., New York, 1975.
 
31.    Ushenko Yu.A., Gorsky M.P., Dubolazov A.V., Motrich A.V., Ushenko V.A., Sidor M.I. Spatial-frequency Fourier polarimetry of the complex de-gree of mutual anisotropy of linear and circular bi-refringence in the diagnostics of oncological chan-ges in morphological structure of biological tissues. Quantum Electronics. 2012. 42, No. 8. P. 727.
https://doi.org/10.1070/QE2012v042n08ABEH014825
 
32.    Ushenko V.A. Complex degree of mutual coherence of biological liquids, in: ROMOPTO Intern. Conference on Micro- to Nano-Photonics III (P. 88820V–88820V), Intern. Society for Optics and Photonics, 2013.
https://doi.org/10.1117/12.2032668