Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (1) P. 005-040 (2018).
DOI: https://doi.org/10.15407/spqeo21.01.005


References

1. Mott N.F. Note on the contact between a metal and an insulator or semi-conductor. Math. Proc. Cambridge Philos. Soc. 1938. 34. P. 568–572.
https://doi.org/10.1017/S0305004100020570
 
2. Schottky W. Halbleitertheorie der Sperrschicht. Naturwissenschaft. 1938. 26, N 52. S. 843.
https://doi.org/10.1007/BF01774216
 
3. Spenke W.E. Zur quantitativen Durchführung der Raumladungs- und Schottky Randschichttheorie der Kristallgleichrichter. Wissenschaftliche Veröffent-lichungen aus den Siemens-Werken 1939. 18. S. 225–291.
 
4. Davydov B.I. About contact resistance of semiconductors. Zhurnal Eksperiment. Teor. Fiziki. 1939. 9. P. 451 (in Russian).
 
5. Davydov B.I. Junction resistances in semiconductors. Zhurnal Eksperiment. Teor. Fiziki. 1940. 10. P. 1342 (in Russian).
 
6. Pekar S.I. Theory of contact with dielectric and semiconductor. Zhurnal Eksperiment. Teor. Fiziki. 1940. 10. P. 1210 (in Russian).
 
7. Pekar S.I. Contact of semiconductor with metal and near-electrode jumps of potential. Izv. AN SSSR, ser. fiz. 1941. 5, No 4-5. P. 422–433 (in Russian); Lifshits I.M. Tamm bounded states of electrons on the crystal surface and surface oscillations of lattice atoms. Uspekhi fizich. nauk. 1955. 56, No 4. P. 531 (in Russian).
 
8. Bardeen J. Surface states and rectification at a metal semiconductor contact. Phys. Rev. 1947. 71, No 10. P. 717–727.
https://doi.org/10.1103/PhysRev.71.717
 
9. Spicer W.E., Kendelewicz T., Newman N., Cao R., McCants C., Miyano K., Lindau I., Liliental-Weber Z., Weber E.R. The advanced unified defect model and its applications. Appl. Surf. Sci. 1988. 33/34. P. 1009–1029.
https://doi.org/10.1016/0169-4332(88)90411-4
 
10. Blank T.V. and Gol'dberg Yu.A. Mechanisms of current flow in metal-semiconductor ohmic contacts. Semiconductors. 2007. 41, No 11. P. 1263–1292.
https://doi.org/10.1134/S1063782607110012
 
11. Roderick E.H. Metal-Semiconductor Contacts. Clarendon, Oxford, 1978.
 
12. Strikha V.I. Theoretical Basics of the Operation of Metal–Semiconductor Contact. Naukova Dumka, Kiev, 1974 (in Russian).
 
13. Morkoç H. Handbook of Nitride Semiconductors and Devices, Vol. 2. WILEY-VCH Verlag GmbH & Co, KGaA, Weinheim, 2008.
 
14. Contacts to Semiconductors. Fundamentals and Technology. Ed. by L.J. Brillson. Noyes Publication, Park Ridge, New Jersey, 1993. Chapter 1. Marshall E.D., Murakami M. Ohmic contacts to GaAs and other III-V compounds: Correlation of microstructures with electrical properties. P. 1–59; Chapter 4. Tung R.T. Schottky barriers and ohmic contacts to silicon. P. 176–276.
 
15. Processing of Wide Band Gap Semiconductors. Ed. by S.J. Pearton. Norwich, NY, William Andrew Publishing – Noyes Publications, 2000.
 
16. Handbook of compound semiconductors: growth, processing, characterization, and devices. Ed. by P.H. Holloway, G.E. McGuire. Park Ridge, N.J., U.S.A.: Noyes Publications, 1995. Chapter 4. Katz A. Physical and chemical deposition of metals as ohmic contacts to InP and related materials, P. 170–250; Chapter 3. Kim T.J., Hollovey P.H. Ohmic contacts to II-VI and III-V compounds semiconductors. P. 80–150.
 
17. SiC Materials and Devices. Ed. by M. Shur, S. Rumyantsev, M. Levinstein. Vol. 1. World Scientific, London, 2007. Chapter 3. Roccaforte F., La Via F., Raineri V. Ohmic contacts to SiC. P. 77–116.
 
18. Marshall E.D. Ohmic Contacts to n-Type Aluminum Gallium Arsenide Utilizing Limited Solid-Phase Reactions. Ph.D. dissertation, University of California, San Diego, 1989.
 
19. Sze S.M., Ng K.K. Physics of Semiconductor Devices. 3 rd ed. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2007.
 
20. Henish A.K. Rectifying Semiconductor Contacts. Clarendon, Oxford, 1957.
 
21. Sachenko A.V., Belyaev A.E., Boltovets N.S., Konakova R.V., Kudryk Ya.Ya., Novitskii S.V., Sheremet V.N., Li J., and Vitusevich S.A. Mechanism of contact resistance formation in ohmic contacts with high dislocation density. J. Appl. Phys. 2012. 111, No 8. P. 083701.
https://doi.org/10.1063/1.3702850
 
22. Sachenko A.V., Belyaev A.E., Boltovets N.S., Vinogradov A.O., Kladko V.P., Konakova R.V., Kudryk Ya.Ya., Kuchuk A.V., Sheremet V.N., Vitusevich S.A. Features of temperature dependence of contact resistivity in ohmic contacts on lapped n-Si. J. Appl. Phys. 2012. 112, No 6. P. 063703.
https://doi.org/10.1063/1.4752715
 
23. Sachenko A.V., Belyaev A.E., Boltovets N.S., Konakova R.V., Vitusevich S.A., Novitskii S.V., Sheremet V.N., Pilipchuk A.S. The temperature dependence of the resistivity of ohmic contacts based on gallium arsenide and indium phosphide in the 4.2–300 K range. Techn. Phys. Lett. 2016. 42, No 6. P. 649–651.
https://doi.org/10.1134/S1063785016060286
 
24. Sachenko A.V., Belyaev A.E., Boltovets N.S., Brunkov P.N., Jmerik V.N., Ivanov S.V., Kapitanchuk L.M., Konakova R.V., Klad'ko V.P., Romanets P.N., Saja P.O., Safryuk N.V., Sheremet V.N. Temperature dependences of the contact resistivity in ohmic contacts to n+ -InN. Semiconductors. 2015. 49, No 4. P. 461–471.
https://doi.org/10.1134/S1063782615040193
 
25. Sachenko A.V., Belyaev A.E., Boltovets N.S., Konakova R.V., Kapitanchuk L.M., Sheremet V.N., Sveshnikov Yu.N., Pilipchuk A.S. Mechanism of current flow in a Au-Ti-Al-Ti-n+ -GaN ohmic contact in the temperature range of 4.2–300 K. Semiconductors. 2014. 48, No 10. P. 1308–1311.
https://doi.org/10.1134/S106378261410025X
 
26. Sachenko A.V., Belyaev A.E., Boltovets N.S., Vinogradov A.O., Pilipenko V.A., Petlitskaya T.V., Anischik V.M., Konakova R.V., Korostinskaya T.V., Kostylyov V.P., Kudryk Ya.Ya., Lyapin V.G., Romanets P.N., Sheremet V.N. On a feature of temperature dependence of contact resistivity for ohmic contacts to n-Si with an n+ -n doping step. SPQEO. 2014. 17, No 1. P. 1–6.
https://doi.org/10.15407/spqeo17.01.001
 
27. Sachenko A.V., Belyaev A.E., Konakova R.V. On the ohmicity of Schottky contacts. Semiconductors. 2016. 50, No. 6. P. 761–768.
https://doi.org/10.1134/S106378261606021X
 
28. Sachenko A.V., Belyaev A.E., Konakova R.V. On a new mechanism for the realization of ohmic contacts. Semiconductors. 2018. 52, No 1. P. 138–142.
https://doi.org/10.1134/S1063782618010190
 
29. Romanets P.N., Sachenko A.V. Electron transport near the Mott transition in n-GaAs and n-GaN. Phase Transitions. 2016. 89, No 1. P. 52–59.
https://doi.org/10.1080/01411594.2015.1077956
 
30. Padovani F.A. and Stratton R. Field and thermionic-field emission in Schottky barriers. Solid State Electronics. 1966. 9, No 7. P. 695–707.
https://doi.org/10.1016/0038-1101(66)90097-9
 
31. Bessolov V.N., Blank T.V., Gol'dberg Yu.A., Konstantinov O.V., Posse E.A. Dependence of the mechanism of current flow in the In-n-GaN alloyed ohmic contact on the majority carrier concentration. Semiconductors. 2008. 42, No 11. P. 1315–1317.
https://doi.org/10.1134/S1063782608110134
 
32. Clausen T., Leistiko O., Chorkendorff I., and Larsen J. Transport properties of low-resistance ohmic contacts to InP. Thin Solid Films. 1993. 232, No 2. P. 215–227.
https://doi.org/10.1016/0040-6090(93)90012-E
 
33. Kupka R.K. and Anderson W.A. Minimal ohmic contact resistance limits to n-type semiconductors. J. Appl. Phys. 1991. 69, No 6. P. 3623.
https://doi.org/10.1063/1.348509
 
34. Svechnikov G.S., Morozovskaya A.N. Nanotubes and Graphene – Materials of Electronics of the Future. Kiev, Logos, 2009 (in Russian).
 
35. Seeger K. Semiconductor Physics. Springer-Verlag, Wien−New York, 1973.
https://doi.org/10.1007/978-3-7091-4111-3
 
36. You J.H. and Johnson H.T. Chapter 3. Effect of dislocations on electrical and optical properties in GaAs and GaN. Solid State Physics. 2009. 61. P. 143–261.
https://doi.org/10.1016/S0081-1947(09)00003-4
 
37. Götz W., Johnson N.M., Chen C., Liu H., Kuo C., Imler W. Activation energies of Si donors in GaN. Appl. Phys. Lett. 1996. 68, No 22. P. 3144.
https://doi.org/10.1063/1.115805
 
38. Walukiewicz W., Lagowski J., Jastrzebski L., Pava P., Lichtensteiger M., Gatos G.H. Electron mobility and free–carrier absorption in InP; determination of the compensation ratio. J. Appl. Phys. 1980. 51, No 5. P. 2659.
https://doi.org/10.1063/1.327925
 
39. Galavanov V.V. and Siukaev N.V. On mechanism of electron scattering in InP. phys. status solidi. 1970. 38, No 2. P. 523–530.
 
40. Ferry D.K. First-order optical and intervalley scattering in semiconductors. Phys. Rev. B. 1976. 14. P. 1605–1609.
https://doi.org/10.1103/PhysRevB.14.1605
 
41. Klad'ko V.P., Chornen'kii S.V., Naumov A.V., Komarov A.V., Tacano M., Sveshnikov Yu.N., Vitusevich S.A., Belyaev A.E. Interface structural defects and photoluminescence properties of epitaxial GaN and AlGaN/GaN layers grown on sapphire. Semiconductors. 2006. 40, No 9. P. 1060–1065.
https://doi.org/10.1134/S1063782606090132
 
42. Matare H.F. Defects Electronics in Semiconductors. Wiley-Interscience, New York, 1971.
 
43. Blank T.V., Goldberg Yu.A., Konstantinov O.V., Nikitin V.G., Posse E.A. Mechanism of current flow in alloyed ohmic In/GaAs contacts. Techn. Phys. 2007. 52, No 2. P. 285–287.
https://doi.org/10.1134/S1063784207020235
 
44. Blank T.V., Gol'dberg Yu.A., Konstantinov O.V., Nikitin V.G., Posse E.A. Peculiarities in the mechanism of current flow through an ohmic contact to gallium phosphide. Tech. Phys. Lett. 2004. 30, No 10. P. 806–809.
https://doi.org/10.1134/1.1813716
 
45. Gol'dberg Yu.A., Posse E.A. Transition processes occurring under continuous and stepwise heating of GaAs surface-barrier structures. Techn. Phys. 2001. 46, No 9. P. 1128–1132.
https://doi.org/10.1134/1.1404165
 
46. Blank T.V., Gol'dberg Yu.A., Konstantinov O.V., Nikitin V.G., Posse E.A. The mechanism of current flow in an alloyed In-GaN ohmic contact. Semiconductors. 2006. 40, No 10. P. 1173–1177.
https://doi.org/10.1134/S1063782606100095
 
47. Kontsevoi Yu.A., Litvinov Yu.M., Fattakhov E.A. Plasticity and Strength of Semiconductor Materials and Structures. Moscow, Radio i Svyaz', 1982 (in Russian).
 
48. Argunova T.S., Grekhov I.V., Gutkin A.A., Kostina L.S., Belyakova E.I., Kudryavtseva T.V., Kim E.D., Park D.M. Dislocations in silicon structures prepared by direct bonding of surfaces with a relief. Physics of the Solid State. 1996. 38, No 11. P. 1832–1834.
 
49. Kim E.D., Kim N.K., Kim S.C., Grekhov I.V., Argunova T.S., Kostina L.S., Kudryavtseva T.V. Silicon direct bonding technology employing a regularly grooved surface. Electron. Lett. 1995. 31, No 23. P. 2047–2048.
https://doi.org/10.1049/el:19951373
 
50. Plößl A. and Kräuter G. Wafer direct bonding: Tailoring adhesion between brittle materials. Mat. Sci. Eng. R. 1999. 25. P. 1–88.
https://doi.org/10.1016/S0927-796X(98)00017-5
 
51. Argunova T.S., Andreev A.G., Belyakova E.I., Grekhov I.V., Kostina L.S., Kudryavtseva T.V. Direct bonding of silicon wafers with a regular relief at the interface. Techn. Phys. Lett. 1996. 22, No 2. P. 133–135.
 
52. Polukhin A.S., Zueva T.K., Solodovnik A.I. Using thermomigration in technology of structures of power semiconductor devices. Silovaya Elektronika. 2006. No 3. P. 110–112 (in Russian).
 
53. Grekhov I.V., Mesyats G.A. Nanosecond semiconductor diodes for pulsed power switching. Phys.-Uspekhi. 2005. 48, No 7. P.703–712.
https://doi.org/10.1070/PU2005v048n07ABEH002471
 
54. Jayant Baliga B. Fundamentals of Power Semiconductor Devices. Springer Science, New York, 2008.
https://doi.org/10.1007/978-0-387-47314-7
 
55. Bonch-Bruevich V.L. and Kalashnikov S.G. Physics of Semiconductors. 2-nd ed. Nauka, Moscow, 1990 (in Russian) [Bonch-Bruevich V.L. Kalashnikov S.G. Halbleiterphysik. Deutscher Verlag der Wissenschaften, Berlin, 1982].
 
56. Handbook of Physical Quantities, ed. by I.S. Grigoriev and E.Z. Meilikhov. CRC Press, Boca Raton, FL, 1996.
 
57. Samsonov G.V., Dvorina L.A., Rud' B.M. Silicides. Moscow, Metallurgiya, 1979 (in Russian).
 
58. Schroder D.K. Semiconductor Material and Device Characterization. New York, Wiley, 2006.
 
59. Belyaev A.E., Basanets V.V., Boltovets N.S., Zorenko A.V., Kapitanchuk L.M., Kladko V.P., Konakova R.V., Kolesnik N.V., Korostinskaya T.V., Kritskaya T.V., Kudryk Ya.Ya., Kuchuk A.V., Milenin V.V., Ataubaeva A.B. Effect of p-n junction overheating on degradation of silicon high-power pulsed IMPATT diodes. Semiconductors. 2011. 45, No 2. P. 253–259.
https://doi.org/10.1134/S1063782611020047
 
60. Davydov V.Yu., Klochikhin A.A. Electronic and vibrational states in InN and In x Ga 1−x N solid solutions. Semiconductors. 2004. 38, No 8. P. 861–898.
https://doi.org/10.1134/1.1787109
 
61. Indium Nitride and Related Alloys, Eds. T.D. Veal, C.F. McConville, W.J. Achaff. CRC Press, Boca Raton, FL, 2010.
 
62. Kovalev A.N. Semiconductor Heterostructure Transistors. DomMISiS, Moscow, 2011 (in Russian).
 
63. Ratnikov V.V., Mamutin V.V., Vekshin V.A., Ivanov S.V. X-ray diffractometric study of the influence of a buffer layer on the microstructure of molecular-beam epitaxial InN layers of different thicknesses. Phys. Solid State. 2001. 43, No 5. P. 949–954.
https://doi.org/10.1134/1.1371383
 
64. Ren F., Abernathy C.R., Pearton S.J., Wisk P.W. Thermal stability of Ti/Pt/Au nonalloyed ohmic contacts on InN. Appl. Phys. Lett. 1994. 64, No 12. P. 1508–1510.
https://doi.org/10.1063/1.111874
 
65. Ren F., Abernathy C.R., Chu S.N.G., Lothian J.R., Pearton S.J. Use of InN for Ohmic contacts on GaAs/AlGaAs heterojunction bipolar transistors. Appl. Phys. Lett. 1995. 66, No 12. P. 1503–1505.
https://doi.org/10.1063/1.113669
 
66. Ren F., Vartuli C.B., Pearton S.A., Abernathy C.R., Donovan S.M., MacKenzie J.D., Shul R.J., Zolper J.C., Lovejoy M.L., Boy A.G., Hagerott-Crawford M., Jones K.A. Comparison of ohmic metallization schemes for InGaAlN. J. Vac. Sci. Technol. A. 1997. 15, No 3. P. 802–806.
https://doi.org/10.1116/1.580711
 
67. Rudinsky M.E., Gutkin A.A., Brunkov P.N. Capacitance-voltage characteristics of the electro-lyte-n-InN surface and electron states at the interface. Semiconductors. 2010. 44, No 8. P. 1020–1024.
https://doi.org/10.1134/S1063782610080117
 
68. Malkov P.M., Danilin I.B., Zel'dovich A.G., Fradkov A.B. A Handbook on Physico-Technical Basics of Criogenics. Moscow: Energiya, 1973 (in Russian).
 
69. Bardeen J. Electrical conductivity of metals. J. Appl. Phys. 1940. 11, No 2. P. 88–111.
https://doi.org/10.1063/1.1712751
 
70. Rinke P., Scheffler M., Qteish A., Winkelnkemper M., Bimberg D., Neugebauer J. Band gap and band parameters of InN and GaN from quasiparticle energy calculations based on exact-exchange density-functional theory. Appl. Phys. Lett. 2006. 89. P. 161919.
https://doi.org/10.1063/1.2364469
 
71. Chin-Yang Chang, Gou-Chung Chi, Wei-Ming Wang, Li-Chyong Chen, Kuei-Hsien Chen, Ren F., Pearton S.J. Transport properties of InN nanowires. Appl. Phys. Lett. 2005. 87. P. 093112.
https://doi.org/10.1063/1.2037850
 
72. Fistul' V.I. Heavily Doped Semiconductors. Plenum Press, New York, 1969.
 
73. Dykman I.M., Rosenbaum V.M., Vasko F.T. Hot electrons in semiconductors with quasi-relativistic band structure. phys. status solidi (b). 1978. 88, No 2. P. 385–395.
 
74. Gantmakher V.F., Levinson Y.B. Carrier Scattering in Metals and Semiconductors. North Holland, Amsterdam, 1987.
 
75. Rauch C., Tuomisto F., King P.D.C., Veal T.D., Lu H., Schaff W.J. Self-compensation in highly n-type InN. Appl. Phys. Lett. 2012. 101, No 1. P. 011903.
https://doi.org/10.1063/1.4732508
 
76. Khanna R., Gila B.P., Stafford L., Pearton S.J., Ren F., Kravchenko I.I., Dariban A., Osinsky A.W 2 B-based ohmic contacts to n-GaN. Appl. Phys. Lett. 2007. 90, No 16. P. 162107.
https://doi.org/10.1063/1.2724900
 
77. Belyaev A.E., Boltovets N.S., Konakova R.V., Kudryk Ya.Ya., Sachenko A.V., Sheremet V.N., Vinogradov A.O. Temperature dependence of contact resistance for Au–Ti–Pd 2 Si–n+ -Si ohmic contacts subjected to microwave irradiation. Semiconductors. 2012. 46, No 3. P. 330–333.
https://doi.org/10.1134/S1063782612030074

78. Iucolano F., Greco G., Roccaforte F. Correlation between microstructure and temperature dependent electrical behavior of annealed Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures. Appl. Phys. Lett. 2013. 103, No 20. P. 201604.
https://doi.org/10.1063/1.4828839
 
79. Brezeanu G., Cabuz C., D. Dascalu, Dan P.A. A computer method for the characterization of surface-layer ohmic contacts. Solid State Electron. 1987. 30, No 5. P. 527–532.
https://doi.org/10.1016/0038-1101(87)90208-5
 
80. Ion Implantation and Beam Processing, Eds. J.S. Williams, J.M. Poate. Academic Press, N.Y., 1984.
 
81. Henisch H.K. Metal Rectifiers. Clarendon, Oxford, 1949. Chap. 5. P. 51.
 
82. Pikus G.E. Fundamentals of the Theory of Semiconductor Devices. Moscow, Nauka, 1965. Chap. 2. P. 38 (in Russian).
 
83. Sachenko A.V., Belyaev A.E., Boltovets N.S., Vinogradov A.O., Kapitanchuk L.M., Konakova R.V., Kostylev V.P., Kudrik Ya.Ya., Klad'ko V.P., Sheremet V.N. The mechanism of contact-resistance formation on lapped n-Si surfaces. Semiconductors. 2013. 47. P. 449–454.
https://doi.org/10.1134/S1063782613030238
 
84. Sullivan M.V. and Eigler J.H. Electroless nickel plating for making ohmic contacts to silicon. J. Electrochem. Soc. 1957. 104, No 4. P. 226–230.
https://doi.org/10.1149/1.2428541
 
85. Gershenson M., Logan R.A., Nelson D.F. Electrical and electroluminescent properties of gallium phosphide diffused p-n junctions. Phys. Rev. 1966. 149, No 2. P. 580–596.
https://doi.org/10.1103/PhysRev.149.580
 
86. Tsarenkov B.V., Goldberg Yu.A., Izergin A.P., Posse E.A., Ravich V.N., Rafiev T.Yu., Sil'vestrova N.F. Metal-gap surface-barrier structures. Sov. Phys. Semicond. 1972. 6. P. 610.
 
87. Tsarenkov B.V., Goldberg Yu.A., Gusev G.V., Ogurtsov V.I. Photoelectric properties of Au–n-GaAs surface-barrier structures in ultraviolet spectral region. Sov. Phys. Semicond. 1974. 8. P. 264–265.
 
88. Polukhin A. Using technological factors of thermomigration process. Silovaya Elektronika. 2009. No 2. P. 90–92 (in Russian).
 
89. Grekhov I.V. Power semiconductor electronics and pulsed technics. Herald of the Russian Acad. Sci. 2008. 78, No 2. P. 106–115 (in Russian).
 
90. Milnes A.G. and Feucht D.L. Heterojunctions and Metal-Semiconductors Junctions. Academic, New York, London, 1972.
 
91. Sugano T., Ikoma T., and Takeisi E. Introduction in-to Microelectronics. Iwanami Shoten, Tokyo, 1985.
 
92. Penin N.A. Effect of recombination velocity at nonrectifying electrode on frequency properties of p-n junction for the case of small alternating voltages. Radiotekhnika i Elektronika. 1957. 2. P. 1053 (in Russian).
 
93. Avak'yants G.M. and Leiderman A.Yu. Effect of the recombination velocity at the rectifying electrode on the voltage-current characteristics of abrupt p-n junction. Radiotekhnika i Elektronika. 1964. 9, No 4. P. 670–674 (in Russian).
 
94. Leiderman A.Yu. and Karageorgii-Alkalaev P.M. On the theory of semiconductor diode with anti-lock back contact. Radiotekhnika i Elektronika. 1965. 10, No 4. P. 720–726 (in Russian).
 
95. Sachenko A.V. and Snitko O.V. Photoeffects in Surface Layers of Semiconductors. Naukova Dumka, Kiev, 1974 (in Russian).
 
96. Physical Methods of Diagnostics in Micro- and Nano-Electronics, Ed. by A.E. Belyaev and R.V. Konakova. ISMA, Kharkov, 2011 (in Russian).
 
97. Farenbruch A.L. and Bube R.H. Fundamentals of Solar Cells Photovoltaic Solar Energy Conversion. Academic, New York, 1983.
 
98. Zavrazhnov Yu.V., Kaganova I.I., Mazel' E.Z., and Mirkin A.I. Powerful High Frequency Transistors. Moscow: Radio Svyaz', 1985 (in Russian).
 
99. Glinchuk M.D. and Deygen M.F. On the theory of local electronic centers near semiconductor surface. Fizika tverdogo tela. 1963. 5, No 2. P. 405–412 (in Russian).
 
100. Palau J.M. and Dumas M. Calculation of semiconductor band bending due to a superficial zone including electronic states: Application to Schottky diodes. Thin Solid Films. 1990. 191, No 1. P. 21–30.
https://doi.org/10.1016/0040-6090(90)90270-N
 
101. Bozhkov V.G., Zaytsev S.E. Model of the close contact metal-semiconductor with the Schottky barrier. Izvestiya vuzov. Fizika. 2005. 48, No 10. P. 77–85 (in Russian).
 
102. Sachenko A.V., Snitko O.V. Peculiarities of kinetics of photoeffects in semiconductors under arbitrary bending the zones on surface. Fizika i tekhnika poluprovodnikov. 1969. 3, No 7. P. 1415 (in Russian).
 
103. Spicer W.E., Lindau I., Skeath P., and Su C.Y. Unified defect model and beyond. J. Vac. Sci. Technol. 1980. 17, No 5. P. 1019–1027.
https://doi.org/10.1116/1.570583
 
104. Swirhun S.E., Swanson R.M. Temperature depen-dence of specific contact resistivity. IEEE Electron Device Lett. 1986. EDL-7, No 3. P. 155–157.
https://doi.org/10.1109/EDL.1986.26329
 
105. Shenai K. Very low resistance nonalloyed ohmic contacts to Sn-doped molecular-beam epitaxial GaAs. IEEE Trans. Electron Devices. 1987. ED-34, No 8. P. 1642–1649.
https://doi.org/10.1109/T-ED.1987.23132