1. Mott N.F. Note on the contact between
a metal and an insulator or semi-conductor. Math. Proc. Cambridge
Philos. Soc. 1938. 34. P. 568572. https://doi.org/10.1017/S0305004100020570
3.
Spenke W.E. Zur quantitativen Durchführung der Raumladungs- und
Schottky Randschichttheorie der Kristallgleichrichter.
Wissenschaftliche Veröffent-lichungen aus den Siemens-Werken 1939. 18.
S. 225291.
4. Davydov B.I. About contact resistance of semiconductors. Zhurnal Eksperiment. Teor. Fiziki. 1939. 9. P. 451 (in Russian).
5. Davydov B.I. Junction resistances in semiconductors. Zhurnal Eksperiment. Teor. Fiziki. 1940. 10. P. 1342 (in Russian).
6.
Pekar S.I. Theory of contact with dielectric and semiconductor. Zhurnal
Eksperiment. Teor. Fiziki. 1940. 10. P. 1210 (in Russian).
7.
Pekar S.I. Contact of semiconductor with metal and near-electrode jumps
of potential. Izv. AN SSSR, ser. fiz. 1941. 5, No 4-5. P. 422433 (in
Russian); Lifshits I.M. Tamm bounded states of electrons on the crystal
surface and surface oscillations of lattice atoms. Uspekhi fizich.
nauk. 1955. 56, No 4. P. 531 (in Russian).
8. Bardeen J. Surface states and rectification at a metal semiconductor contact. Phys. Rev. 1947. 71, No 10. P. 717727. https://doi.org/10.1103/PhysRev.71.717
9.
Spicer W.E., Kendelewicz T., Newman N., Cao R., McCants C., Miyano K.,
Lindau I., Liliental-Weber Z., Weber E.R. The advanced unified defect
model and its applications. Appl. Surf. Sci. 1988. 33/34. P. 10091029. https://doi.org/10.1016/0169-4332(88)90411-4
10.
Blank T.V. and Gol'dberg Yu.A. Mechanisms of current flow in
metal-semiconductor ohmic contacts. Semiconductors. 2007. 41, No 11. P.
12631292. https://doi.org/10.1134/S1063782607110012
12. Strikha V.I. Theoretical Basics of the Operation of MetalSemiconductor Contact. Naukova Dumka, Kiev, 1974 (in Russian).
13. Morkoç H. Handbook of Nitride Semiconductors and Devices, Vol. 2. WILEY-VCH Verlag GmbH & Co, KGaA, Weinheim, 2008.
14.
Contacts to Semiconductors. Fundamentals and Technology. Ed. by L.J.
Brillson. Noyes Publication, Park Ridge, New Jersey, 1993. Chapter 1.
Marshall E.D., Murakami M. Ohmic contacts to GaAs and other III-V
compounds: Correlation of microstructures with electrical properties.
P. 159; Chapter 4. Tung R.T. Schottky barriers and ohmic contacts to
silicon. P. 176276.
15. Processing of Wide Band Gap
Semiconductors. Ed. by S.J. Pearton. Norwich, NY, William Andrew
Publishing Noyes Publications, 2000.
16. Handbook of
compound semiconductors: growth, processing, characterization, and
devices. Ed. by P.H. Holloway, G.E. McGuire. Park Ridge, N.J., U.S.A.:
Noyes Publications, 1995. Chapter 4. Katz A. Physical and chemical
deposition of metals as ohmic contacts to InP and related materials, P.
170250; Chapter 3. Kim T.J., Hollovey P.H. Ohmic contacts to II-VI and
III-V compounds semiconductors. P. 80150.
17. SiC
Materials and Devices. Ed. by M. Shur, S. Rumyantsev, M. Levinstein.
Vol. 1. World Scientific, London, 2007. Chapter 3. Roccaforte F., La
Via F., Raineri V. Ohmic contacts to SiC. P. 77116.
18.
Marshall E.D. Ohmic Contacts to n-Type Aluminum Gallium Arsenide
Utilizing Limited Solid-Phase Reactions. Ph.D. dissertation, University
of California, San Diego, 1989.
19. Sze S.M., Ng K.K. Physics of Semiconductor Devices. 3 rd ed. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2007.
20. Henish A.K. Rectifying Semiconductor Contacts. Clarendon, Oxford, 1957.
21.
Sachenko A.V., Belyaev A.E., Boltovets N.S., Konakova R.V., Kudryk
Ya.Ya., Novitskii S.V., Sheremet V.N., Li J., and Vitusevich S.A.
Mechanism of contact resistance formation in ohmic contacts with high
dislocation density. J. Appl. Phys. 2012. 111, No 8. P. 083701. https://doi.org/10.1063/1.3702850
22.
Sachenko A.V., Belyaev A.E., Boltovets N.S., Vinogradov A.O., Kladko
V.P., Konakova R.V., Kudryk Ya.Ya., Kuchuk A.V., Sheremet V.N.,
Vitusevich S.A. Features of temperature dependence of contact
resistivity in ohmic contacts on lapped n-Si. J. Appl. Phys. 2012. 112,
No 6. P. 063703. https://doi.org/10.1063/1.4752715
23.
Sachenko A.V., Belyaev A.E., Boltovets N.S., Konakova R.V., Vitusevich
S.A., Novitskii S.V., Sheremet V.N., Pilipchuk A.S. The temperature
dependence of the resistivity of ohmic contacts based on gallium
arsenide and indium phosphide in the 4.2300 K range. Techn. Phys.
Lett. 2016. 42, No 6. P. 649651. https://doi.org/10.1134/S1063785016060286
24.
Sachenko A.V., Belyaev A.E., Boltovets N.S., Brunkov P.N., Jmerik V.N.,
Ivanov S.V., Kapitanchuk L.M., Konakova R.V., Klad'ko V.P., Romanets
P.N., Saja P.O., Safryuk N.V., Sheremet V.N. Temperature dependences of
the contact resistivity in ohmic contacts to n+ -InN. Semiconductors.
2015. 49, No 4. P. 461471. https://doi.org/10.1134/S1063782615040193
25.
Sachenko A.V., Belyaev A.E., Boltovets N.S., Konakova R.V., Kapitanchuk
L.M., Sheremet V.N., Sveshnikov Yu.N., Pilipchuk A.S. Mechanism of
current flow in a Au-Ti-Al-Ti-n+ -GaN ohmic contact in the temperature
range of 4.2300 K. Semiconductors. 2014. 48, No 10. P. 13081311. https://doi.org/10.1134/S106378261410025X
26.
Sachenko A.V., Belyaev A.E., Boltovets N.S., Vinogradov A.O., Pilipenko
V.A., Petlitskaya T.V., Anischik V.M., Konakova R.V., Korostinskaya
T.V., Kostylyov V.P., Kudryk Ya.Ya., Lyapin V.G., Romanets P.N.,
Sheremet V.N. On a feature of temperature dependence of contact
resistivity for ohmic contacts to n-Si with an n+ -n doping step.
SPQEO. 2014. 17, No 1. P. 16. https://doi.org/10.15407/spqeo17.01.001
27.
Sachenko A.V., Belyaev A.E., Konakova R.V. On the ohmicity of Schottky
contacts. Semiconductors. 2016. 50, No. 6. P. 761768. https://doi.org/10.1134/S106378261606021X
28.
Sachenko A.V., Belyaev A.E., Konakova R.V. On a new mechanism for the
realization of ohmic contacts. Semiconductors. 2018. 52, No 1. P.
138142. https://doi.org/10.1134/S1063782618010190
29.
Romanets P.N., Sachenko A.V. Electron transport near the Mott
transition in n-GaAs and n-GaN. Phase Transitions. 2016. 89, No 1. P.
5259. https://doi.org/10.1080/01411594.2015.1077956
30.
Padovani F.A. and Stratton R. Field and thermionic-field emission in
Schottky barriers. Solid State Electronics. 1966. 9, No 7. P. 695707. https://doi.org/10.1016/0038-1101(66)90097-9
31.
Bessolov V.N., Blank T.V., Gol'dberg Yu.A., Konstantinov O.V., Posse
E.A. Dependence of the mechanism of current flow in the In-n-GaN
alloyed ohmic contact on the majority carrier concentration.
Semiconductors. 2008. 42, No 11. P. 13151317. https://doi.org/10.1134/S1063782608110134
32.
Clausen T., Leistiko O., Chorkendorff I., and Larsen J. Transport
properties of low-resistance ohmic contacts to InP. Thin Solid Films.
1993. 232, No 2. P. 215227. https://doi.org/10.1016/0040-6090(93)90012-E
33.
Kupka R.K. and Anderson W.A. Minimal ohmic contact resistance limits to
n-type semiconductors. J. Appl. Phys. 1991. 69, No 6. P. 3623. https://doi.org/10.1063/1.348509
34.
Svechnikov G.S., Morozovskaya A.N. Nanotubes and Graphene Materials
of Electronics of the Future. Kiev, Logos, 2009 (in Russian).
36.
You J.H. and Johnson H.T. Chapter 3. Effect of dislocations on
electrical and optical properties in GaAs and GaN. Solid State Physics.
2009. 61. P. 143261. https://doi.org/10.1016/S0081-1947(09)00003-4
37.
Götz W., Johnson N.M., Chen C., Liu H., Kuo C., Imler W. Activation
energies of Si donors in GaN. Appl. Phys. Lett. 1996. 68, No 22. P.
3144. https://doi.org/10.1063/1.115805
38.
Walukiewicz W., Lagowski J., Jastrzebski L., Pava P., Lichtensteiger
M., Gatos G.H. Electron mobility and freecarrier absorption in InP;
determination of the compensation ratio. J. Appl. Phys. 1980. 51, No 5.
P. 2659. https://doi.org/10.1063/1.327925
39. Galavanov V.V. and Siukaev N.V. On mechanism of electron scattering in InP. phys. status solidi. 1970. 38, No 2. P. 523530.
41.
Klad'ko V.P., Chornen'kii S.V., Naumov A.V., Komarov A.V., Tacano M.,
Sveshnikov Yu.N., Vitusevich S.A., Belyaev A.E. Interface structural
defects and photoluminescence properties of epitaxial GaN and AlGaN/GaN
layers grown on sapphire. Semiconductors. 2006. 40, No 9. P. 10601065. https://doi.org/10.1134/S1063782606090132
42. Matare H.F. Defects Electronics in Semiconductors. Wiley-Interscience, New York, 1971.
43.
Blank T.V., Goldberg Yu.A., Konstantinov O.V., Nikitin V.G., Posse E.A.
Mechanism of current flow in alloyed ohmic In/GaAs contacts. Techn.
Phys. 2007. 52, No 2. P. 285287. https://doi.org/10.1134/S1063784207020235
44.
Blank T.V., Gol'dberg Yu.A., Konstantinov O.V., Nikitin V.G., Posse
E.A. Peculiarities in the mechanism of current flow through an ohmic
contact to gallium phosphide. Tech. Phys. Lett. 2004. 30, No 10. P.
806809. https://doi.org/10.1134/1.1813716
45.
Gol'dberg Yu.A., Posse E.A. Transition processes occurring under
continuous and stepwise heating of GaAs surface-barrier structures.
Techn. Phys. 2001. 46, No 9. P. 11281132. https://doi.org/10.1134/1.1404165
46.
Blank T.V., Gol'dberg Yu.A., Konstantinov O.V., Nikitin V.G., Posse
E.A. The mechanism of current flow in an alloyed In-GaN ohmic contact.
Semiconductors. 2006. 40, No 10. P. 11731177. https://doi.org/10.1134/S1063782606100095
47.
Kontsevoi Yu.A., Litvinov Yu.M., Fattakhov E.A. Plasticity and Strength
of Semiconductor Materials and Structures. Moscow, Radio i Svyaz', 1982
(in Russian).
48. Argunova T.S., Grekhov I.V., Gutkin
A.A., Kostina L.S., Belyakova E.I., Kudryavtseva T.V., Kim E.D., Park
D.M. Dislocations in silicon structures prepared by direct bonding of
surfaces with a relief. Physics of the Solid State. 1996. 38, No 11. P.
18321834.
49. Kim E.D., Kim N.K., Kim S.C., Grekhov I.V.,
Argunova T.S., Kostina L.S., Kudryavtseva T.V. Silicon direct bonding
technology employing a regularly grooved surface. Electron. Lett. 1995.
31, No 23. P. 20472048. https://doi.org/10.1049/el:19951373
51.
Argunova T.S., Andreev A.G., Belyakova E.I., Grekhov I.V., Kostina
L.S., Kudryavtseva T.V. Direct bonding of silicon wafers with a regular
relief at the interface. Techn. Phys. Lett. 1996. 22, No 2. P. 133135.
52.
Polukhin A.S., Zueva T.K., Solodovnik A.I. Using thermomigration in
technology of structures of power semiconductor devices. Silovaya
Elektronika. 2006. No 3. P. 110112 (in Russian).
58. Schroder D.K. Semiconductor Material and Device Characterization. New York, Wiley, 2006.
59.
Belyaev A.E., Basanets V.V., Boltovets N.S., Zorenko A.V., Kapitanchuk
L.M., Kladko V.P., Konakova R.V., Kolesnik N.V., Korostinskaya T.V.,
Kritskaya T.V., Kudryk Ya.Ya., Kuchuk A.V., Milenin V.V., Ataubaeva
A.B. Effect of p-n junction overheating on degradation of silicon
high-power pulsed IMPATT diodes. Semiconductors. 2011. 45, No 2. P.
253259. https://doi.org/10.1134/S1063782611020047
60.
Davydov V.Yu., Klochikhin A.A. Electronic and vibrational states in InN
and In x Ga 1−x N solid solutions. Semiconductors. 2004. 38, No 8. P.
861898. https://doi.org/10.1134/1.1787109
61. Indium Nitride and Related Alloys, Eds. T.D. Veal, C.F. McConville, W.J. Achaff. CRC Press, Boca Raton, FL, 2010.
63.
Ratnikov V.V., Mamutin V.V., Vekshin V.A., Ivanov S.V. X-ray
diffractometric study of the influence of a buffer layer on the
microstructure of molecular-beam epitaxial InN layers of different
thicknesses. Phys. Solid State. 2001. 43, No 5. P. 949954. https://doi.org/10.1134/1.1371383
64.
Ren F., Abernathy C.R., Pearton S.J., Wisk P.W. Thermal stability of
Ti/Pt/Au nonalloyed ohmic contacts on InN. Appl. Phys. Lett. 1994. 64,
No 12. P. 15081510. https://doi.org/10.1063/1.111874
65.
Ren F., Abernathy C.R., Chu S.N.G., Lothian J.R., Pearton S.J. Use of
InN for Ohmic contacts on GaAs/AlGaAs heterojunction bipolar
transistors. Appl. Phys. Lett. 1995. 66, No 12. P. 15031505. https://doi.org/10.1063/1.113669
66.
Ren F., Vartuli C.B., Pearton S.A., Abernathy C.R., Donovan S.M.,
MacKenzie J.D., Shul R.J., Zolper J.C., Lovejoy M.L., Boy A.G.,
Hagerott-Crawford M., Jones K.A. Comparison of ohmic metallization
schemes for InGaAlN. J. Vac. Sci. Technol. A. 1997. 15, No 3. P.
802806. https://doi.org/10.1116/1.580711
67.
Rudinsky M.E., Gutkin A.A., Brunkov P.N. Capacitance-voltage
characteristics of the electro-lyte-n-InN surface and electron states
at the interface. Semiconductors. 2010. 44, No 8. P. 10201024. https://doi.org/10.1134/S1063782610080117
68.
Malkov P.M., Danilin I.B., Zel'dovich A.G., Fradkov A.B. A Handbook on
Physico-Technical Basics of Criogenics. Moscow: Energiya, 1973 (in
Russian).
70.
Rinke P., Scheffler M., Qteish A., Winkelnkemper M., Bimberg D.,
Neugebauer J. Band gap and band parameters of InN and GaN from
quasiparticle energy calculations based on exact-exchange
density-functional theory. Appl. Phys. Lett. 2006. 89. P. 161919. https://doi.org/10.1063/1.2364469
71.
Chin-Yang Chang, Gou-Chung Chi, Wei-Ming Wang, Li-Chyong Chen,
Kuei-Hsien Chen, Ren F., Pearton S.J. Transport properties of InN
nanowires. Appl. Phys. Lett. 2005. 87. P. 093112. https://doi.org/10.1063/1.2037850
72. Fistul' V.I. Heavily Doped Semiconductors. Plenum Press, New York, 1969.
73.
Dykman I.M., Rosenbaum V.M., Vasko F.T. Hot electrons in semiconductors
with quasi-relativistic band structure. phys. status solidi (b). 1978.
88, No 2. P. 385395.
74. Gantmakher V.F., Levinson Y.B. Carrier Scattering in Metals and Semiconductors. North Holland, Amsterdam, 1987.
75.
Rauch C., Tuomisto F., King P.D.C., Veal T.D., Lu H., Schaff W.J.
Self-compensation in highly n-type InN. Appl. Phys. Lett. 2012. 101, No
1. P. 011903. https://doi.org/10.1063/1.4732508
76.
Khanna R., Gila B.P., Stafford L., Pearton S.J., Ren F., Kravchenko
I.I., Dariban A., Osinsky A.W 2 B-based ohmic contacts to n-GaN. Appl.
Phys. Lett. 2007. 90, No 16. P. 162107. https://doi.org/10.1063/1.2724900
77.
Belyaev A.E., Boltovets N.S., Konakova R.V., Kudryk Ya.Ya., Sachenko
A.V., Sheremet V.N., Vinogradov A.O. Temperature dependence of contact
resistance for AuTiPd 2 Sin+ -Si ohmic contacts subjected to
microwave irradiation. Semiconductors. 2012. 46, No 3. P. 330333. https://doi.org/10.1134/S1063782612030074
78.
Iucolano F., Greco G., Roccaforte F. Correlation between microstructure
and temperature dependent electrical behavior of annealed Ti/Al/Ni/Au
ohmic contacts to AlGaN/GaN heterostructures. Appl. Phys. Lett. 2013.
103, No 20. P. 201604. https://doi.org/10.1063/1.4828839
79.
Brezeanu G., Cabuz C., D. Dascalu, Dan P.A. A computer method for the
characterization of surface-layer ohmic contacts. Solid State Electron.
1987. 30, No 5. P. 527532. https://doi.org/10.1016/0038-1101(87)90208-5
80. Ion Implantation and Beam Processing, Eds. J.S. Williams, J.M. Poate. Academic Press, N.Y., 1984.
81. Henisch H.K. Metal Rectifiers. Clarendon, Oxford, 1949. Chap. 5. P. 51.
82. Pikus G.E. Fundamentals of the Theory of Semiconductor Devices. Moscow, Nauka, 1965. Chap. 2. P. 38 (in Russian).
83.
Sachenko A.V., Belyaev A.E., Boltovets N.S., Vinogradov A.O.,
Kapitanchuk L.M., Konakova R.V., Kostylev V.P., Kudrik Ya.Ya., Klad'ko
V.P., Sheremet V.N. The mechanism of contact-resistance formation on
lapped n-Si surfaces. Semiconductors. 2013. 47. P. 449454. https://doi.org/10.1134/S1063782613030238
84.
Sullivan M.V. and Eigler J.H. Electroless nickel plating for making
ohmic contacts to silicon. J. Electrochem. Soc. 1957. 104, No 4. P.
226230. https://doi.org/10.1149/1.2428541
85.
Gershenson M., Logan R.A., Nelson D.F. Electrical and
electroluminescent properties of gallium phosphide diffused p-n
junctions. Phys. Rev. 1966. 149, No 2. P. 580596. https://doi.org/10.1103/PhysRev.149.580
87. Tsarenkov B.V.,
Goldberg Yu.A., Gusev G.V., Ogurtsov V.I. Photoelectric properties of
Aun-GaAs surface-barrier structures in ultraviolet spectral region.
Sov. Phys. Semicond. 1974. 8. P. 264265.
88. Polukhin A. Using technological factors of thermomigration process. Silovaya Elektronika. 2009. No 2. P. 9092 (in Russian).
89.
Grekhov I.V. Power semiconductor electronics and pulsed technics.
Herald of the Russian Acad. Sci. 2008. 78, No 2. P. 106115 (in
Russian).
90. Milnes A.G. and Feucht D.L. Heterojunctions and Metal-Semiconductors Junctions. Academic, New York, London, 1972.
91. Sugano T., Ikoma T., and Takeisi E. Introduction in-to Microelectronics. Iwanami Shoten, Tokyo, 1985.
92.
Penin N.A. Effect of recombination velocity at nonrectifying electrode
on frequency properties of p-n junction for the case of small
alternating voltages. Radiotekhnika i Elektronika. 1957. 2. P. 1053 (in
Russian).
93. Avak'yants G.M. and Leiderman A.Yu. Effect
of the recombination velocity at the rectifying electrode on the
voltage-current characteristics of abrupt p-n junction. Radiotekhnika i
Elektronika. 1964. 9, No 4. P. 670674 (in Russian).
94.
Leiderman A.Yu. and Karageorgii-Alkalaev P.M. On the theory of
semiconductor diode with anti-lock back contact. Radiotekhnika i
Elektronika. 1965. 10, No 4. P. 720726 (in Russian).
95. Sachenko A.V. and Snitko O.V. Photoeffects in Surface Layers of Semiconductors. Naukova Dumka, Kiev, 1974 (in Russian).
96.
Physical Methods of Diagnostics in Micro- and Nano-Electronics, Ed. by
A.E. Belyaev and R.V. Konakova. ISMA, Kharkov, 2011 (in Russian).
97. Farenbruch A.L. and Bube R.H. Fundamentals of Solar Cells Photovoltaic Solar Energy Conversion. Academic, New York, 1983.
98.
Zavrazhnov Yu.V., Kaganova I.I., Mazel' E.Z., and Mirkin A.I. Powerful
High Frequency Transistors. Moscow: Radio Svyaz', 1985 (in Russian).
99.
Glinchuk M.D. and Deygen M.F. On the theory of local electronic centers
near semiconductor surface. Fizika tverdogo tela. 1963. 5, No 2. P.
405412 (in Russian).
100. Palau J.M. and Dumas M.
Calculation of semiconductor band bending due to a superficial zone
including electronic states: Application to Schottky diodes. Thin Solid
Films. 1990. 191, No 1. P. 2130. https://doi.org/10.1016/0040-6090(90)90270-N
101.
Bozhkov V.G., Zaytsev S.E. Model of the close contact
metal-semiconductor with the Schottky barrier. Izvestiya vuzov. Fizika.
2005. 48, No 10. P. 7785 (in Russian).
102. Sachenko
A.V., Snitko O.V. Peculiarities of kinetics of photoeffects in
semiconductors under arbitrary bending the zones on surface. Fizika i
tekhnika poluprovodnikov. 1969. 3, No 7. P. 1415 (in Russian).
103.
Spicer W.E., Lindau I., Skeath P., and Su C.Y. Unified defect model and
beyond. J. Vac. Sci. Technol. 1980. 17, No 5. P. 10191027. https://doi.org/10.1116/1.570583
104.
Swirhun S.E., Swanson R.M. Temperature depen-dence of specific contact
resistivity. IEEE Electron Device Lett. 1986. EDL-7, No 3. P. 155157. https://doi.org/10.1109/EDL.1986.26329
105.
Shenai K. Very low resistance nonalloyed ohmic contacts to Sn-doped
molecular-beam epitaxial GaAs. IEEE Trans. Electron Devices. 1987.
ED-34, No 8. P. 16421649. https://doi.org/10.1109/T-ED.1987.23132