Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (1) P. 041-047 (2018).
DOI: https://doi.org/10.15407/spqeo21.01.041


References

1. Wixforth A., Kotthaus J.P., and Weimann G. Quantum oscillations in the surface-acoustic-wave attenuation caused by a two-dimensional electron system. Phys. Rev. Lett. 1986. 56, No 19. P. 2104.
https://doi.org/10.1103/PhysRevLett.56.2104
 
2. Willett R.L., West K.W., and Pfeiffer L.N. Apparent inconsistency of observed composite fer-mion geometric resonances and measured effective mass. Phys. Rev. Lett. 1995. 75, No 16. P. 2988.
https://doi.org/10.1103/PhysRevLett.75.2988
 
3. Fil' D.V. Interaction of nonuniform elastic waves with two-dimensional electrons in AlGaAs–GaAs–AlGaAs heterostructures. Low Temp. Phys. 1999. 25. P. 466; doi: 10.1063/1.593768.
https://doi.org/10.1063/1.593768
 
4. Karpovich I.A., Anshon A.V., Filatov D.O. Defect generation and passivation in the strained quantum well GaAs/InGaAs heterostructures under hydrogen plasma treatment. Semiconductors. 1998. 32, No 9. P. 1089.
https://doi.org/10.1134/1.1187528
 
5. Kim T.W., Park H.L. Interband transition and electronic subband studies in CdTe/ZnTe strained single and double quantum wells grown by double-well temperature-gradient vapor deposition. J. Cryst. Growth. 1996. 159. P. 467–470; doi: 10.1016/0022-0248(95)00636-2.
https://doi.org/10.1016/0022-0248(95)00636-2
 
6. Kozlovsky V.I., Litvinov V.G., Sadofyev Yu.G. Band offset in Zn 1−x Cd x Te/ZnTe single quantum well structure grown by molecular beam epitaxy on GaAs (001). Semiconductors. 2000. 34, No 8. P. 998.
https://doi.org/10.1134/1.1188108
 
7. Khankina S.I., Yakovenko V.M., Yakovenko I.V. Surface electron states produced by a Rayleigh wave. J. Exp. Theor. Phys. 2007. 104, No 3. P. 467; doi: 10.1134/S1063776107030132.
https://doi.org/10.1134/S1063776107030132
 
8. Seneta M.Ya., Peleschak O.R., Peleshchak R.M., Uhryn Yu.O. in: Proc. IX Intern. Conf. on Topical Problems of Semiconductor Physics, Truskavets, 2016, ed. by R. Pazyuk (Publ. House "UKRPOL" Ltd., Drohobych), P. 152.
 
9. Kovalev V.M, Chaplik A.V. Interaction of surface and bulk acoustic waves with a two-dimensional semimetal. J. Exp. Theor. Phys. 2015. 120, No 2. P. 312–318; doi: 10.1134/S1063776115020028.
https://doi.org/10.1134/S1063776115020028
 
10. Kosachev V.V., Gandurin Y.N., Murav'ev S.E. Effect of the structurally damaged surface layer of an isotropic solid on Rayleigh wave dispersion and damping. Phys. Solid State. 2011. 53, No 10. P. 2174; doi: 10.1134/S1063783411100179
https://doi.org/10.1134/S1063783411100179
 
11. Vlasenko A.I., Baidullaeva A., Veleschuk V.P., Mozol P.E., Boiko N.I., Litvin O.S. On the formation of nanostructures on a CdTe surface, stimulated by surface acoustic waves under nano-second laser irradiation. Semiconductors. 2015. 49, No 2. P. 229 ; doi: 10.1134/S1063782615020220.
https://doi.org/10.1134/S1063782615020220
 
12. Peleshchak R.M., Kuzyk O.V., Dan'kiv O.O. Temperature regimes of formation of nanometer periodic structure of adsorbed atoms in GaAs semiconductors under the action of laser irradiation. Condens. Matter Phys. 2015. 18, No 4. P. 43801; doi: 10.5488/CMP.18.43801.
https://doi.org/10.5488/CMP.18.43801
 
13. Peleshchak R.M., Lazurchak I., Kuzyk O.V., Dan'kiv O.O., Zegrya G.G. Role of acousto- electric interaction in the formation of nanoscale periodic structures of adsorbed atoms. Semiconductors. 2016. 50, No 3. P. 314; doi: 10.1134/S1063782616030180.
https://doi.org/10.1134/S1063782616030180
 
14. Landau L.D., Lifshitz E.M. Theory of Elasticity. Pergamon Press, London, 1970. P. 165.
 
15. Haken H. Synergetics. Springer, 1983.
https://doi.org/10.1007/978-3-642-88338-5
 
16. Kunin I.A. Nonlocal Theory of Elasticity. Moscow, Nauka, 1975 (in Russian).
 
17. Krivoglaz M.Ya. Diffraction of X-rays and Neutrons in Imperfect Crystals. Kiev, Naukova Dumka, 1983 (in Russian).
 
18. Kosevich A.M. The Theory of Crystal Lattice. Kharkov, 1988 (in Russian).
 
19. Falco G.L., Shpyrko S.G. Model of strain redistribution and concentration stationary profiles of implanted impurity. Ukr. J. Phys. 1995. 40, No 10. P. 1115.
 
20. Emel'yanov V.I., Eremin K.I. Threshold nucleation of a nanometer-scale periodic adatom structure with the participation of a static surface acoustic wave. JETP Lett. 2002. 75, No 2. P. 98; doi: 10.1134/1.1466485.
https://doi.org/10.1134/1.1466485
 
21. Peleshchak R.M., Kuzyk O.V., Dan'kiv O.O. Diffusion-deformation theory of the formation of self-assembled nanoclusters of the implanted impurities. J. Phys. Stud. 2013. 17, No 2. P. 2601.
 
22. Deev V.N., Pyatakov P.A. Optical generation of acoustic waves on photorefractive lattice at pulsating lighting. Tech. Phys. Lett. 1990. 60, No 1. P. 91.
 
23. Wagner J., Ramsteiner M., Wild Ch., Koidl P. Resonant Raman scattering of amorphous carbon and polycrystalline diamond films. Phys. Rev. B. 1989. 40. P. 1817; doi: 10.1103/PhysRevB.40.1817.
https://doi.org/10.1103/PhysRevB.40.1817