Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (1) P. 065-072 (2018).
DOI: https://doi.org/10.15407/spqeo21.01.065


References

1. Kroemer H. Heterostructure bipolar transistors and integrated circuits. Proc. IEEE. 1982. 70, No 13.
https://doi.org/10.1109/PROC.1982.12226
 
2. Sze S.M. and Ng K.K. Physics of Semiconductor Devices. Wiley, Hoboken, NJ, USA, 2006.
https://doi.org/10.1002/0470068329
 
3. Novoselov K.S. and Geim A.K. The rise of grapheme. Nature Mater. 2007. 6. P. 183–191.
https://doi.org/10.1038/nmat1849
 
4. Wang Q., Kalantar-Zadeh K., Kis A., Coleman J.N., and Strano M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7. 2012. P. 699–712.
https://doi.org/10.1038/nnano.2012.193
 
5. Geim A.K. and Grigorieva I.V., Van der Waals heterostructures. Nature. 2013. 499. P. 419–425.
https://doi.org/10.1038/nature12385
 
6. Britnell L., Gorbachev R.V., Jalil R. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science. 2012. 335. P. 947–950.
https://doi.org/10.1126/science.1218461
 
7. Yu W.J., Liu Y., Zhou H., Yin A., Li Z., Huang Y., and Duan X. Highly efficient gate-tunable photo-current generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 2013. 8. P. 952–958.
https://doi.org/10.1038/nnano.2013.219
 
8. Ross J.S., Klement P., Jones A.M., Ghimire N.J., Yan J., Mandrus D.G., Taniguchi T., Watanabe K., Kitamura K., Yao W., Cobden D.H., and Xu X. Electrically tunable excitonic light-emitting diodes based on monolayer WSe 2 p-n junctions. Nat. Nanotechnol. 2014. 9. P. 268–272.
https://doi.org/10.1038/nnano.2014.26
 
9. Withers F., Del Pozo-Zamudio O., Mishchenko A. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nature Mater. 2015. 14. P. 301–306.
https://doi.org/10.1038/nmat4205
 
10. Furchi M.M., Pospischil A., Libisch F., Burgdorfer J., and Mueller T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 2014. 14, No 8. P. 4785–4791.
https://doi.org/10.1021/nl501962c
 
11. Yang W., Chen G., Shi Z. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013. 12. P. 792–797.
https://doi.org/10.1038/nmat3695
 
12. Fallahazad B., Lee K., S. Kang et al. Gate-tunable resonant tunneling in double bilayer graphene heterostructures. Nano Lett. 2015. 15, No 1. P. 428–433.
https://doi.org/10.1021/nl503756y
 
13. He D., Zhang Y., Wu Q. et al. Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nat. Commun. 2014. 5. P. 5162.
https://doi.org/10.1038/ncomms6162
 
14. Kory M.J., Worle M., Weber T., Payamyar P., van de Poll S.W., Dshemuchadse J., Trapp N., and Schluter A.D. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 2014. 6. P. 779–784.
https://doi.org/10.1038/nchem.2007
 
15. Kissel P., Murray D.J., Wulftange W.J., Catalano V.J., and King B.T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photo-polymerization. Nat. Chem. 2014. 6. P. 774–778.
https://doi.org/10.1038/nchem.2008
 
16. Kim K., Lee T.H., Santos E.J.G., Jo P.S., Salleo A., Nishi Y., and Bao Z. Structural and electrical investigation of C60–graphene vertical hetero-structures. ACS Nano. 2015. 9. P. 5922–5928.
https://doi.org/10.1021/acsnano.5b00581
 
17. Kim K., Santos E.J.G., Lee T.H., Nishi Y., and Bao Z. Epitaxially grown strained pentacene thin film on graphene membrane. Small. 2015. 11, No 17. P. 2037.
https://doi.org/10.1002/smll.201403006
 
18. Dean C.R., Young A.F., Meric I. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010. 5. P. 722–726.
https://doi.org/10.1038/nnano.2010.172
 
19. Lee C., Schiros T., Santos E.J.G. et al. Epitaxial growth of molecular crystals on van der Waals substrates for high-performance organic electronics. Adv. Mater. 2014. 26. P. 2812–2817.
https://doi.org/10.1002/adma.201304973
 
20. Hlaing H., Kim C., Carta F., Nam C., Barton R.A., Petrone N., Hone J., and Kymissis I. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures. Nano Lett. 2015. 15. P. 69–74.
https://doi.org/10.1021/nl5029599
 
21. Parui S., Pietrobon L., Ciudad D., Velez S., Sun X., Casanova F., Stoliar P., and Hueso L.E. Gate-controlled energy barrier at a graphene/molecular semiconductor junction. Adv. Funct. Mater. 2015. 25. P. 2972–2979.
https://doi.org/10.1002/adfm.201403407
 
22. Liu W., Cai J., Li Z. Self-assembly of semi-conductor nanoparticles/reduced graphene oxide (RGO) composite aerogels for enhanced photocatalytic performance and facile recycling in aqueous photocatalysis. ACS Sustainable Chem. Eng. 2015. 3, No 2. P. 277–282.
https://doi.org/10.1021/sc5006473
 
23. Gao N., Fang X. Synthesis and development of graphene-inorganic semiconductor nanocomposites. Chem. Rev. 2015. 115, No 16. P. 8294–8343.
https://doi.org/10.1021/cr400607y
 
24. Yang M.-Q., Zhang N., Pagliaro M., Xu Y.-J. Artificial photosynthesis over graphene-semi-conductor composites. Are we getting better? Chem. Soc. Rev. 2014. 43. P. 8240–8254.
https://doi.org/10.1039/C4CS00213J
 
25. Xing M., Shen F., Qiu B., Zhang J. Highly dispersed boron doped graphene nanosheets loaded with TiO 2 nanoparticles for enhancing CO 2 photoreduction. Sci. Rep. 2014. 4. P. 6341–6347.
https://doi.org/10.1038/srep06341
 
26. Park H., Chang S., Jean J., Jayce J., Cheng J., Araujo P.T. et al., Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Lett. 2013. 13. P. 233–236.
https://doi.org/10.1021/nl303920b
 
27. Hasan K., Sandberg M.O., Nur O., Willander M. Transparent electrodes: ZnO/polyfluorene hybrid LED on an efficient hole-transport layer of graphene oxide and transparent graphene electrode. Adv. Opt. Mater. 2014. 2, No. 4. P. 304–308.
https://doi.org/10.1002/adom.201470021
 
28. Pan X., Yang M.Q., Xu Y.J. Morphology control defect engineering and photoactivity tuning of ZnO crystals by graphene oxide – a unique 2D macromolecular surfactant. Phys. Chem. Chem. Phys. 2014. 16. P. 5589–5599.
https://doi.org/10.1039/c3cp55038a
 
29. Biroju R.K., Tilak N., Rajender G., Dhara S., Giri P.K. Catalyst free growth of ZnO nanowires on graphene and graphene oxide and its enhanced photoluminescence and photoresponse. Nanotechnol. 2015. 26. P. 601–612.
https://doi.org/10.1088/0957-4484/26/14/145601
 
30. Szabo T., Berkesi O., Forgo P., Josepovits K., Sanakis Y., Petridis D. and Dekany I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 2006. 18. P. 2740–2749.
https://doi.org/10.1021/cm060258+
 
31. Mkhoyan K.A., Contryman A.W., Silcox J. et al., Atomic and electronic structure of grapheme oxide. Nano Lett. 2009. 9, No 3. P. 1058–1063.
https://doi.org/10.1021/nl8034256
 
32. Young S.J., Liu Y.H., Hsiao C.H., Chang S.J., Wang B.C., Kao T.H., Tsai K.S., San-Lein W. ZnO-based ultraviolet photodetectors with novel nanosheet structures. IEEE Trans. Nanotechnol. 2014. 13, No 2. P. 238–247.
https://doi.org/10.1109/TNANO.2014.2298335
 
33. Park C., Lee J., Sob H.M., Chang W.S. An ultrafast response grating structural ZnO photodetector with back-to-back Schottky barriers produced by hydro-thermal growth. J. Mater. Chem. 2015. 3. P. 2737–2746.
 
34. Liu H., Sun Q., Xing J., Zheng Z., Zhang Z., Lu Z., Zhao K. Fast and enhanced broadband photo-response of a ZnO nanowire array/reduced graphene oxide film hybrid photodetector from the visible to the near-infrared range. ACS Appl. Mater. Interfaces. 2015. 7, No 12. P. 6645–6646.
https://doi.org/10.1021/am509084r
 
35. Chang H., Sun Z., Ho K.F., Tao X., Yan F., Kwok W.M., Zheng Z. A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale. 2011. 3. P. 258–266.
https://doi.org/10.1039/C0NR00588F
 
36. Boruah B.D., Ferry D.B., Mukherjee A., Misra A. Few-layer graphene/ZnO nanowires based high performance UV photodetector. Nanotechnol. 2015. 26. P. 235–237.
https://doi.org/10.1088/0957-4484/26/23/235703
 
37. Fu X.W., Liao Z.M., Zhou Y.B., Wu H.C., Bie Y.Q., Xu J., Yu D.P. Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector. Appl. Phys. Lett. 2012. 100. P. 223–224.
https://doi.org/10.1063/1.4724208
 
38. Khoa N.T., Kim S.W., Yoo D.H., Cho S., Kim E.J., Hahn S.H. Fabrication of Au/graphene-wrapped ZnO-nanoparticle-assembled hollow spheres with effective photo-induced charge transfer for photocatalysis. ACS Appl. Mater. Interf. 2015. 7, No. 6. P. 3524–3528.
https://doi.org/10.1021/acsami.5b00152
 
39. Lin C.L., Chang W.Y., Huang Y.L. et al. J. Appl. Phys. 2015. 54. P. 4–8.
 
40. Fouda A.N., El Basaty A.B. and Eid E.A. Photo-response of functionalized self-assembled graphene oxide on zinc oxide heterostructure to UV illumination. Nanoscale Res. Lett. 2016. 1. P. 1–8.
https://doi.org/10.1186/s11671-015-1221-8
 
41. Ab initio calculation [E-resource] – Mode access to the resource: http://sites.google.com/a/kdpu.edu.ua/ calculationphysics.