4.
Wang Q., Kalantar-Zadeh K., Kis A., Coleman J.N., and Strano M.S.
Electronics and optoelectronics of two-dimensional transition metal
dichalcogenides. Nat. Nanotechnol. 7. 2012. P. 699712. https://doi.org/10.1038/nnano.2012.193
6.
Britnell L., Gorbachev R.V., Jalil R. et al. Field-effect tunneling
transistor based on vertical graphene heterostructures. Science. 2012.
335. P. 947950. https://doi.org/10.1126/science.1218461
7.
Yu W.J., Liu Y., Zhou H., Yin A., Li Z., Huang Y., and Duan X. Highly
efficient gate-tunable photo-current generation in vertical
heterostructures of layered materials. Nat. Nanotechnol. 2013. 8. P.
952958. https://doi.org/10.1038/nnano.2013.219
8.
Ross J.S., Klement P., Jones A.M., Ghimire N.J., Yan J., Mandrus D.G.,
Taniguchi T., Watanabe K., Kitamura K., Yao W., Cobden D.H., and Xu X.
Electrically tunable excitonic light-emitting diodes based on monolayer
WSe 2 p-n junctions. Nat. Nanotechnol. 2014. 9. P. 268272. https://doi.org/10.1038/nnano.2014.26
9.
Withers F., Del Pozo-Zamudio O., Mishchenko A. et al. Light-emitting
diodes by band-structure engineering in van der Waals heterostructures.
Nature Mater. 2015. 14. P. 301306. https://doi.org/10.1038/nmat4205
10.
Furchi M.M., Pospischil A., Libisch F., Burgdorfer J., and Mueller T.
Photovoltaic effect in an electrically tunable van der Waals
heterojunction. Nano Lett. 2014. 14, No 8. P. 47854791. https://doi.org/10.1021/nl501962c
11.
Yang W., Chen G., Shi Z. et al. Epitaxial growth of single-domain
graphene on hexagonal boron nitride. Nat. Mater. 2013. 12. P. 792797. https://doi.org/10.1038/nmat3695
12.
Fallahazad B., Lee K., S. Kang et al. Gate-tunable resonant tunneling
in double bilayer graphene heterostructures. Nano Lett. 2015. 15, No 1.
P. 428433. https://doi.org/10.1021/nl503756y
13.
He D., Zhang Y., Wu Q. et al. Two-dimensional quasi-freestanding
molecular crystals for high-performance organic field-effect
transistors. Nat. Commun. 2014. 5. P. 5162. https://doi.org/10.1038/ncomms6162
14.
Kory M.J., Worle M., Weber T., Payamyar P., van de Poll S.W.,
Dshemuchadse J., Trapp N., and Schluter A.D. Gram-scale synthesis of
two-dimensional polymer crystals and their structure analysis by X-ray
diffraction. Nat. Chem. 2014. 6. P. 779784. https://doi.org/10.1038/nchem.2007
15.
Kissel P., Murray D.J., Wulftange W.J., Catalano V.J., and King B.T. A
nanoporous two-dimensional polymer by single-crystal-to-single-crystal
photo-polymerization. Nat. Chem. 2014. 6. P. 774778. https://doi.org/10.1038/nchem.2008
16.
Kim K., Lee T.H., Santos E.J.G., Jo P.S., Salleo A., Nishi Y., and Bao
Z. Structural and electrical investigation of C60graphene vertical
hetero-structures. ACS Nano. 2015. 9. P. 59225928. https://doi.org/10.1021/acsnano.5b00581
17.
Kim K., Santos E.J.G., Lee T.H., Nishi Y., and Bao Z. Epitaxially grown
strained pentacene thin film on graphene membrane. Small. 2015. 11, No
17. P. 2037. https://doi.org/10.1002/smll.201403006
18.
Dean C.R., Young A.F., Meric I. et al. Boron nitride substrates for
high-quality graphene electronics. Nat. Nanotechnol. 2010. 5. P.
722726. https://doi.org/10.1038/nnano.2010.172
19.
Lee C., Schiros T., Santos E.J.G. et al. Epitaxial growth of molecular
crystals on van der Waals substrates for high-performance organic
electronics. Adv. Mater. 2014. 26. P. 28122817. https://doi.org/10.1002/adma.201304973
20.
Hlaing H., Kim C., Carta F., Nam C., Barton R.A., Petrone N., Hone J.,
and Kymissis I. Low-voltage organic electronics based on a gate-tunable
injection barrier in vertical graphene-organic semiconductor
heterostructures. Nano Lett. 2015. 15. P. 6974. https://doi.org/10.1021/nl5029599
21.
Parui S., Pietrobon L., Ciudad D., Velez S., Sun X., Casanova F.,
Stoliar P., and Hueso L.E. Gate-controlled energy barrier at a
graphene/molecular semiconductor junction. Adv. Funct. Mater. 2015. 25.
P. 29722979. https://doi.org/10.1002/adfm.201403407
22.
Liu W., Cai J., Li Z. Self-assembly of semi-conductor
nanoparticles/reduced graphene oxide (RGO) composite aerogels for
enhanced photocatalytic performance and facile recycling in aqueous
photocatalysis. ACS Sustainable Chem. Eng. 2015. 3, No 2. P. 277282. https://doi.org/10.1021/sc5006473
23.
Gao N., Fang X. Synthesis and development of graphene-inorganic
semiconductor nanocomposites. Chem. Rev. 2015. 115, No 16. P. 82948343. https://doi.org/10.1021/cr400607y
24.
Yang M.-Q., Zhang N., Pagliaro M., Xu Y.-J. Artificial photosynthesis
over graphene-semi-conductor composites. Are we getting better? Chem.
Soc. Rev. 2014. 43. P. 82408254. https://doi.org/10.1039/C4CS00213J
25.
Xing M., Shen F., Qiu B., Zhang J. Highly dispersed boron doped
graphene nanosheets loaded with TiO 2 nanoparticles for enhancing CO 2
photoreduction. Sci. Rep. 2014. 4. P. 63416347. https://doi.org/10.1038/srep06341
26.
Park H., Chang S., Jean J., Jayce J., Cheng J., Araujo P.T. et al.,
Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Lett.
2013. 13. P. 233236. https://doi.org/10.1021/nl303920b
27.
Hasan K., Sandberg M.O., Nur O., Willander M. Transparent electrodes:
ZnO/polyfluorene hybrid LED on an efficient hole-transport layer of
graphene oxide and transparent graphene electrode. Adv. Opt. Mater.
2014. 2, No. 4. P. 304308. https://doi.org/10.1002/adom.201470021
28.
Pan X., Yang M.Q., Xu Y.J. Morphology control defect engineering and
photoactivity tuning of ZnO crystals by graphene oxide a unique 2D
macromolecular surfactant. Phys. Chem. Chem. Phys. 2014. 16. P.
55895599. https://doi.org/10.1039/c3cp55038a
29.
Biroju R.K., Tilak N., Rajender G., Dhara S., Giri P.K. Catalyst free
growth of ZnO nanowires on graphene and graphene oxide and its enhanced
photoluminescence and photoresponse. Nanotechnol. 2015. 26. P. 601612. https://doi.org/10.1088/0957-4484/26/14/145601
30.
Szabo T., Berkesi O., Forgo P., Josepovits K., Sanakis Y., Petridis D.
and Dekany I. Evolution of surface functional groups in a series of
progressively oxidized graphite oxides. Chem. Mater. 2006. 18. P.
27402749. https://doi.org/10.1021/cm060258+
31.
Mkhoyan K.A., Contryman A.W., Silcox J. et al., Atomic and electronic
structure of grapheme oxide. Nano Lett. 2009. 9, No 3. P. 10581063. https://doi.org/10.1021/nl8034256
32.
Young S.J., Liu Y.H., Hsiao C.H., Chang S.J., Wang B.C., Kao T.H., Tsai
K.S., San-Lein W. ZnO-based ultraviolet photodetectors with novel
nanosheet structures. IEEE Trans. Nanotechnol. 2014. 13, No 2. P.
238247. https://doi.org/10.1109/TNANO.2014.2298335
33.
Park C., Lee J., Sob H.M., Chang W.S. An ultrafast response grating
structural ZnO photodetector with back-to-back Schottky barriers
produced by hydro-thermal growth. J. Mater. Chem. 2015. 3. P. 27372746.
34.
Liu H., Sun Q., Xing J., Zheng Z., Zhang Z., Lu Z., Zhao K. Fast and
enhanced broadband photo-response of a ZnO nanowire array/reduced
graphene oxide film hybrid photodetector from the visible to the
near-infrared range. ACS Appl. Mater. Interfaces. 2015. 7, No 12. P.
66456646. https://doi.org/10.1021/am509084r
35.
Chang H., Sun Z., Ho K.F., Tao X., Yan F., Kwok W.M., Zheng Z. A highly
sensitive ultraviolet sensor based on a facile in situ solution-grown
ZnO nanorod/graphene heterostructure. Nanoscale. 2011. 3. P. 258266. https://doi.org/10.1039/C0NR00588F
36.
Boruah B.D., Ferry D.B., Mukherjee A., Misra A. Few-layer graphene/ZnO
nanowires based high performance UV photodetector. Nanotechnol. 2015.
26. P. 235237. https://doi.org/10.1088/0957-4484/26/23/235703
37.
Fu X.W., Liao Z.M., Zhou Y.B., Wu H.C., Bie Y.Q., Xu J., Yu D.P.
Graphene/ZnO nanowire/graphene vertical structure based fast-response
ultraviolet photodetector. Appl. Phys. Lett. 2012. 100. P. 223224. https://doi.org/10.1063/1.4724208
38.
Khoa N.T., Kim S.W., Yoo D.H., Cho S., Kim E.J., Hahn S.H. Fabrication
of Au/graphene-wrapped ZnO-nanoparticle-assembled hollow spheres with
effective photo-induced charge transfer for photocatalysis. ACS Appl.
Mater. Interf. 2015. 7, No. 6. P. 35243528. https://doi.org/10.1021/acsami.5b00152
39. Lin C.L., Chang W.Y., Huang Y.L. et al. J. Appl. Phys. 2015. 54. P. 48.
40.
Fouda A.N., El Basaty A.B. and Eid E.A. Photo-response of
functionalized self-assembled graphene oxide on zinc oxide
heterostructure to UV illumination. Nanoscale Res. Lett. 2016. 1. P.
18. https://doi.org/10.1186/s11671-015-1221-8
41. Ab initio calculation [E-resource] Mode access to the resource: http://sites.google.com/a/kdpu.edu.ua/ calculationphysics.