Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (1) P. 019-025 (2019).
DOI: https://doi.org/10.15407/spqeo22.01.019


References

1. Mahajan A. and Skromme B.J. Design and optimization of junction termination extension (JTE) for 4H-SiC high voltage Schottky diodes. Solid-State Electron. 2005. 49. P. 945-955.
https://doi.org/10.1016/j.sse.2005.03.020
2. Matsunami H. Current SiC technology for power electronic devices beyond Si. Microelectron. Eng. 2006. 83. P. 2-4.
https://doi.org/10.1016/j.mee.2005.10.012
3. Kimoto T. Material science and device physics in SiC technology for high-voltage power devices. Jpn. J. Appl. Phys. 2015. 54. P. 040103.
https://doi.org/10.7567/JJAP.54.040103
4. Privitera S.M.S., Latrice G., Camarda M., Piluso N., and La Via F. Electrical properties of extended defects in 4H-SiC investigated by photoinduced current measurements. Appl. Phys. Express. 2017. 10. P. 036601.
https://doi.org/10.7567/APEX.10.036601
5. Rhoderick E.H. Metal-semiconductor contacts. IEE PROC. 1982. 129. P. 1-14.
https://doi.org/10.1049/ip-i-1.1982.0001
6. Crofton J. and Sriram S. Reverse leakage current calculations for SiC Schottky contacts. IEEE Trans.Electron. Devices. 1996. 43. P. 2305-2307.
https://doi.org/10.1109/16.544427
7. Eriksson J., Rorsman N. and Zirath H. 4H-silicon carbide Schottky barrier diodes for microwave applications IEEE Trans. Microwave Theory Technol. 2003. 51. P. 796-804.
https://doi.org/10.1109/TMTT.2003.808610
8. Blasciuc-Dimitriu D., Horsfall A. B., Wright N.G., et al. Quantum modelling of I-V characteristics for 4H-SiC Schottky barrier diodes. Semicond. Sci. Technol. 2005. 20. P. 10-15.
https://doi.org/10.1088/0268-1242/20/1/002
9. Furno M., Bonani F. and Ghione G. Transfer matrix method modelling of inhomogeneous Schottky barrier diodes on silicon carbide. Solid-State Electron. 2007. 51. P. 466-474.
https://doi.org/10.1016/j.sse.2007.01.028
10. Latreche A. Reverse bias-dependence of Schottky barrier height on silicon carbide: influence of the temperature and donor concentration. Int. J. Phys. Res. 2014. 2. P. 40-49.
https://doi.org/10.14419/ijpr.v2i2.3120
11. Okino H., Kameshiro N., Konishi K. et al. Analysis of high reverse currents of 4H-SiC Schottky-barrier diodes. J. Appl. Phys. 2017. 122. P. 235704.
https://doi.org/10.1063/1.5009344
12. Tsu R. and Esaki L. Tunneling in a finite superlattice. Appl. Phys. Lett. 1973. 22. P. 562-564.
https://doi.org/10.1063/1.1654509
13. Treu M., Rupp R., Kpels H. and Bartsch W. Temperature dependence of forward and reverse characteristics of Ti, W, Ta and Ni Schottky diodes on 4H-SiC. Mater. Sci. Forum. 2001. 353-356. P. 679-682.
https://doi.org/10.4028/www.scientific.net/MSF.353-356.679
14. Oyama S., Hashizume T. and Hasegawa H. Mechanism of current leakage through metal/n-GaN interfaces. Appl. Surf. Sci. 2002. 190. P. 322-325.
https://doi.org/10.1016/S0169-4332(01)00902-3
15. Hatakeyama T., Kushibe M., Watanabe T., Imai S. and Shinohe T. Optimum design of a SiC Schottky barrier diode considering reverse leakage current due to tunneling process. Mat. Sci. Forum. 2003. 433-436. P. 831-834.
https://doi.org/10.4028/www.scientific.net/MSF.433-436.831
16. Xie K., Hartz S.A., Ayres V.M. et al. Thermionic field emission in GaN nanoFET Schottky barriers. Mater. Res. Express. 2015. 2. P. 015003.
https://doi.org/10.1088/2053-1591/2/1/015003
17. Kim H. Reverse-bias leakage current mechanisms in Cu/n-type Schottky junction using oxygen plasma treatment. Trans. Electr. Electron. Mater. 2016. 17. P. 113-117.
https://doi.org/10.4313/TEEM.2016.17.2.113
18. Higashiwaki M. et al. Temperature-dependent capaci-tance-voltage and current-voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n-Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl. Phys. Lett. 2016. 108. P. 133503.
https://doi.org/10.1063/1.4945267
19. Padovani F.A. and Stratton R. Field and thermionic-field emission in Schottky barriers. Solid-State Electron.1962. 9. P. 695-707.
https://doi.org/10.1016/0038-1101(66)90097-9
20. Ivanov P.A., Grekhov I.V., Kon'kov O.I. et al. I-V characteristics of high-voltage 4H-SiC diodes with a 1.1-eV Schottky barrier. Semiconductors. 2011. 45. P. 1374-1377.
https://doi.org/10.1134/S1063782611100095
21. Ivanov P.A., Grekhov I.V., Potapov A.S. et al. Reverse leakage currents in high-voltage 4H-SiC Schottky diodes. Mater. Sci. Forum. 2013. 740-742. P. 877-880.
https://doi.org/10.4028/www.scientific.net/MSF.740-742.877
22. Lee K.Y., Liu Y.H., Wang S.C., Chan L.S. Influence of the design of square p+ islands on the characteristics of 4H-SiC JBS. IEEE Trans. Electron. Devices. 2017. 64. P. 1394-1398.
https://doi.org/10.1109/TED.2017.2653844
23. Huang L. Barrier inhomogeneities of platinum contacts to 4H-SiC. Superlattices and Microstructures. 2016. 100. P. 648-655.
https://doi.org/10.1016/j.spmi.2016.10.034
24. Latreche A. Conduction mechanisms of the reverse leakage current of 4H-SiC Schottky barrier diode. Semicond. Sci. Technol. 2018. https://doi.org/10.1088/1361-6641/aaf8cb.
https://doi.org/10.1088/1361-6641/aaf8cb
25. Latreche A. and Ouennoughi Z. Modified Airy function method modeling of tunneling current for Schottky barrier diodes on silicon carbide. Semicond. Sci. Technol. 2013. 28. P. 105003.
https://doi.org/10.1088/0268-1242/28/10/105003
26. Zheng L., Joshi R.P. and Fazi C. Effects of barrier height fluctuations and electron tunnelling on the reverse characteristics of 6H-SiC Schottky contacts. J. Appl. Phys. 1999. 85. P. 3701-3707.
https://doi.org/10.1063/1.369735
27. Rhoderick E.H. and Williams R.H. Metal-Semiconductor Contact. Oxford: Oxford University Press, 1988.
28. Naik S.S., Reddy V.R. Temperature dependency and current transport mechanisms of Pd/V/n-type InP Schottky rectifiers. Adv. Mat. Lett. 2012. 3. P. 188-196.
https://doi.org/10.5185/amlett.2012.1316
29. Turut A., Saglam M., Efeoglu H., Yalcin N., Yildirim M., Abay B. Interpreting the nonideal reverse bias CV characteristics and importance of the dependence of Schottky barrier height on applied voltage. Physica B: Condensed Matter. 1995. 205. P. 41-50.
https://doi.org/10.1016/0921-4526(94)00229-O
30. Vassilevski K.V., Nikitina I.P., Wright N.G. et al. Device processing and characterisation of high temperature silicon carbide Schottky diodes. Microelectronic Engineering. 2006. 83. P. 150-154.
https://doi.org/10.1016/j.mee.2005.10.041
31. Ivanov P.A., Grekhov I.V., Potapov A.S. et al. Excess leakage currents in high-voltage 4H-SiC Schottky diodes. Semiconductors. 2010. 44. P. 653-656.
https://doi.org/10.1134/S1063782610050180
32. Itoh A. and Matsunami H. Analysis of Schottky barrier heights of metal/SiC contacts and its possible application to high-voltage rectifying devices. phys. status solidi (a). 1997. 162. P. 389-408.
https://doi.org/10.1002/1521-396X(199707)162:1<389::AID-PSSA389>3.0.CO;2-X
33. Roccaforte F. Richardson's constant in inhomo-geneous silicon carbide Schottky contacts. J. Appl. Phys. 2003. 93. P. 9137-9144.
https://doi.org/10.1063/1.1573750