1. Mahajan A. and Skromme B.J. Design and optimization of junction termination extension (JTE) for 4H-SiC high voltage Schottky diodes. Solid-State Electron. 2005. 49. P. 945-955. https://doi.org/10.1016/j.sse.2005.03.020 |
|
2. Matsunami H. Current SiC technology for power electronic devices beyond Si. Microelectron. Eng. 2006. 83. P. 2-4. https://doi.org/10.1016/j.mee.2005.10.012 |
|
3. Kimoto T. Material science and device physics in SiC technology for high-voltage power devices. Jpn. J. Appl. Phys. 2015. 54. P. 040103. https://doi.org/10.7567/JJAP.54.040103 |
|
4. Privitera S.M.S., Latrice G., Camarda M., Piluso N., and La Via F. Electrical properties of extended defects in 4H-SiC investigated by photoinduced current measurements. Appl. Phys. Express. 2017. 10. P. 036601. https://doi.org/10.7567/APEX.10.036601 |
|
5. Rhoderick E.H. Metal-semiconductor contacts. IEE PROC. 1982. 129. P. 1-14. https://doi.org/10.1049/ip-i-1.1982.0001 |
|
6. Crofton J. and Sriram S. Reverse leakage current calculations for SiC Schottky contacts. IEEE Trans.Electron. Devices. 1996. 43. P. 2305-2307. https://doi.org/10.1109/16.544427 |
|
7. Eriksson J., Rorsman N. and Zirath H. 4H-silicon carbide Schottky barrier diodes for microwave applications IEEE Trans. Microwave Theory Technol. 2003. 51. P. 796-804. https://doi.org/10.1109/TMTT.2003.808610 |
|
8. Blasciuc-Dimitriu D., Horsfall A. B., Wright N.G., et al. Quantum modelling of I-V characteristics for 4H-SiC Schottky barrier diodes. Semicond. Sci. Technol. 2005. 20. P. 10-15. https://doi.org/10.1088/0268-1242/20/1/002 |
|
9. Furno M., Bonani F. and Ghione G. Transfer matrix method modelling of inhomogeneous Schottky barrier diodes on silicon carbide. Solid-State Electron. 2007. 51. P. 466-474. https://doi.org/10.1016/j.sse.2007.01.028 |
|
10. Latreche A. Reverse bias-dependence of Schottky barrier height on silicon carbide: influence of the temperature and donor concentration. Int. J. Phys. Res. 2014. 2. P. 40-49. https://doi.org/10.14419/ijpr.v2i2.3120 |
|
11. Okino H., Kameshiro N., Konishi K. et al. Analysis of high reverse currents of 4H-SiC Schottky-barrier diodes. J. Appl. Phys. 2017. 122. P. 235704. https://doi.org/10.1063/1.5009344 |
|
12. Tsu R. and Esaki L. Tunneling in a finite superlattice. Appl. Phys. Lett. 1973. 22. P. 562-564. https://doi.org/10.1063/1.1654509 |
|
13. Treu M., Rupp R., Kpels H. and Bartsch W. Temperature dependence of forward and reverse characteristics of Ti, W, Ta and Ni Schottky diodes on 4H-SiC. Mater. Sci. Forum. 2001. 353-356. P. 679-682. https://doi.org/10.4028/www.scientific.net/MSF.353-356.679 |
|
14. Oyama S., Hashizume T. and Hasegawa H. Mechanism of current leakage through metal/n-GaN interfaces. Appl. Surf. Sci. 2002. 190. P. 322-325. https://doi.org/10.1016/S0169-4332(01)00902-3 |
|
15. Hatakeyama T., Kushibe M., Watanabe T., Imai S. and Shinohe T. Optimum design of a SiC Schottky barrier diode considering reverse leakage current due to tunneling process. Mat. Sci. Forum. 2003. 433-436. P. 831-834. https://doi.org/10.4028/www.scientific.net/MSF.433-436.831 |
|
16. Xie K., Hartz S.A., Ayres V.M. et al. Thermionic field emission in GaN nanoFET Schottky barriers. Mater. Res. Express. 2015. 2. P. 015003. https://doi.org/10.1088/2053-1591/2/1/015003 |
|
17. Kim H. Reverse-bias leakage current mechanisms in Cu/n-type Schottky junction using oxygen plasma treatment. Trans. Electr. Electron. Mater. 2016. 17. P. 113-117. https://doi.org/10.4313/TEEM.2016.17.2.113 |
|
18. Higashiwaki M. et al. Temperature-dependent capaci-tance-voltage and current-voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n-Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl. Phys. Lett. 2016. 108. P. 133503. https://doi.org/10.1063/1.4945267 |
|
19. Padovani F.A. and Stratton R. Field and thermionic-field emission in Schottky barriers. Solid-State Electron.1962. 9. P. 695-707. https://doi.org/10.1016/0038-1101(66)90097-9 |
|
20. Ivanov P.A., Grekhov I.V., Kon'kov O.I. et al. I-V characteristics of high-voltage 4H-SiC diodes with a 1.1-eV Schottky barrier. Semiconductors. 2011. 45. P. 1374-1377. https://doi.org/10.1134/S1063782611100095 |
|
21. Ivanov P.A., Grekhov I.V., Potapov A.S. et al. Reverse leakage currents in high-voltage 4H-SiC Schottky diodes. Mater. Sci. Forum. 2013. 740-742. P. 877-880. https://doi.org/10.4028/www.scientific.net/MSF.740-742.877 |
|
22. Lee K.Y., Liu Y.H., Wang S.C., Chan L.S. Influence of the design of square p+ islands on the characteristics of 4H-SiC JBS. IEEE Trans. Electron. Devices. 2017. 64. P. 1394-1398. https://doi.org/10.1109/TED.2017.2653844 |
|
23. Huang L. Barrier inhomogeneities of platinum contacts to 4H-SiC. Superlattices and Microstructures. 2016. 100. P. 648-655. https://doi.org/10.1016/j.spmi.2016.10.034 |
|
24. Latreche A. Conduction mechanisms of the reverse leakage current of 4H-SiC Schottky barrier diode. Semicond. Sci. Technol. 2018. https://doi.org/10.1088/1361-6641/aaf8cb. https://doi.org/10.1088/1361-6641/aaf8cb |
|
25. Latreche A. and Ouennoughi Z. Modified Airy function method modeling of tunneling current for Schottky barrier diodes on silicon carbide. Semicond. Sci. Technol. 2013. 28. P. 105003. https://doi.org/10.1088/0268-1242/28/10/105003 |
|
26. Zheng L., Joshi R.P. and Fazi C. Effects of barrier height fluctuations and electron tunnelling on the reverse characteristics of 6H-SiC Schottky contacts. J. Appl. Phys. 1999. 85. P. 3701-3707. https://doi.org/10.1063/1.369735 |
|
27. Rhoderick E.H. and Williams R.H. Metal-Semiconductor Contact. Oxford: Oxford University Press, 1988. |
|
28. Naik S.S., Reddy V.R. Temperature dependency and current transport mechanisms of Pd/V/n-type InP Schottky rectifiers. Adv. Mat. Lett. 2012. 3. P. 188-196. https://doi.org/10.5185/amlett.2012.1316 |
|
29. Turut A., Saglam M., Efeoglu H., Yalcin N., Yildirim M., Abay B. Interpreting the nonideal reverse bias CV characteristics and importance of the dependence of Schottky barrier height on applied voltage. Physica B: Condensed Matter. 1995. 205. P. 41-50. https://doi.org/10.1016/0921-4526(94)00229-O |
|
30. Vassilevski K.V., Nikitina I.P., Wright N.G. et al. Device processing and characterisation of high temperature silicon carbide Schottky diodes. Microelectronic Engineering. 2006. 83. P. 150-154. https://doi.org/10.1016/j.mee.2005.10.041 |
|
31. Ivanov P.A., Grekhov I.V., Potapov A.S. et al. Excess leakage currents in high-voltage 4H-SiC Schottky diodes. Semiconductors. 2010. 44. P. 653-656. https://doi.org/10.1134/S1063782610050180 |
|
32. Itoh A. and Matsunami H. Analysis of Schottky barrier heights of metal/SiC contacts and its possible application to high-voltage rectifying devices. phys. status solidi (a). 1997. 162. P. 389-408. https://doi.org/10.1002/1521-396X(199707)162:1<389::AID-PSSA389>3.0.CO;2-X |
|
33. Roccaforte F. Richardson's constant in inhomo-geneous silicon carbide Schottky contacts. J. Appl. Phys. 2003. 93. P. 9137-9144. https://doi.org/10.1063/1.1573750 |